Что такое суточный ход температуры. Суточный ход температуры воздуха у земной поверхности, тепловой режим атмосферы, метеорология и климатология развитие науки, географические факторы климата, климатические измерение, предсказание климата, предсказание по

Суточным ходом температуры воздуха называется изменение температуры воздуха в течение суток – в общем отражает ход температуры земной поверхности, но моменты наступления максимумов и минимумов несколько запаздывают, максимум наступает в 14 часов, минимум после восхода солнца.

Суточная амплитуда температуры воздуха (разница между максимальной и минимальной температурами воздуха в течение суток) выше на суше, чем над океаном; уменьшается при движении в высокие широты, (наибольшая в тропических пустынях – до 40 0 С) и, возрастает в местах с оголенной почвой. Величина суточной амплитуды температуры воздуха – это один из показателей континентальности климата. В пустынях она намного больше, чем в районах с морским климатом.

Годовой ход температуры воздуха (изменение среднемесячной температуры в течение года) определяется, прежде всего, широтой места. Годовая амплитуда температуры воздуха - разница между максимальной и минимальной среднемесячными температурами.

Географическое распределение температуры воздуха показывают с помощью изотерм – линий, соединяющих на карте точки с одинаковыми температурами. Распределение температуры воздуха зонально, годовые изотермы в целом имеют субширотное простирание и соответствуют годовому распределению радиационного баланса.

В среднем за год самой теплой параллелью является 10 0 с.ш. с температурой 27 0 С – это термический экватор . Летом термический экватор смещается до 20 0 с.ш., зимой – приближается к экватору на 5 0 с.ш. Смещение термического экватора в СП объясняется тем, что в СП площадь суши, расположенная в низких широтах, больше по сравнению с ЮП, а она в течение года имеет более высокие температуры.

Тепло по земной поверхности распределено зонально-регионально. Помимо географической широты на распределение температур на Земле влияют: характер распределения суши и моря, рельеф, высота местности над уровнем моря, морские и воздушные течения.

Широтное распределение годовых изотерм нарушают теплые и холодные течения. В умеренных широтах СП западные берега, омываемые теплыми течениями, теплее восточных берегов, вдоль которых проходят холодные течения. Следовательно, изотермы у западных берегов изгибаются к полюсу, у восточных – к экватору.

Средняя годовая температура СП +15,2 0 С, а ЮП +13,2 0 С. минимальная температура в СП достигала –77 0 С (Оймякон) (абсолютный минимум СП) и –68 0 С (Верхоянск). В ЮП минимальные температуры гораздо ниже; на станциях «Советская» и «Восток» была отмечена температура –89,2 0 С (абсолютный минимум ЮП). Минимальная температура в безоблачную погоду в Антарктиде может опускаться до –93 0 С. Самые высокие температуры наблюдаются в пустынях тропического пояса, в Триполи +58 0 С, в Калифорнии, в Долине Смерти, отмечена температура +56,7 0 С.


О том насколько материки и океаны влияют на распределение температур, дают представление карты изономал (изономалы – линии, соединяющие точки с одинаковыми аномалиями температур). Аномалии представляют собой отклонения фактических температур от среднеширотных. Аномалии бывают положительные и отрицательные. Положительные аномалии наблюдаются летом над подогретыми материками. Над Азией температуры выше среднеширотных на 4 0 С. Зимой положительные аномалии располагаются над теплыми течениями (над теплым Северо-Атлантичеким течением у берегов Скандинавии температура выше нормы на 28 0 С). Отрицательные аномалии ярко выражены зимой над охлажденными материками и летом – над холодными течениями. Например, в Оймяконе зимой температура на 22 0 С ниже нормы.

На Земле выделяют следующие тепловые пояса (за границы тепловых поясов приняты изотермы):

1. Жаркий , ограничен в каждом полушарии годовой изотермой +20 0 С, проходящий вблизи 30 0 с. ш. и ю.ш.

2. Два умеренных пояса , которые в каждом полушарии лежат между годовой изотермой +20 0 С и +10 0 С самого теплого месяца (соответственно июля или января).

3. Два холодных пояса , граница проходит по изотерме 0 0 С самого теплого месяца. Иногда выделяют области вечного мороза , которые располагаются вокруг полюсов (Шубаев, 1977)

Таким образом:

1. Единственным источником тепла, имеющим практическое значение для хода экзогенных процессов в ГО, является Солнце. Тепло от Солнца поступает в мировое пространство в форме лучистой энергии, которая затем, поглощенная Землей, превращается в энергию тепловую.

2. Солнечный луч на своем пути подвергается многочисленным воздействиям (рассеяние, поглощение, отражение) со стороны различных элементов пронизываемой им среды и тех поверхностей, на которые он падает.

3. На распределение солнечной радиации влияют: расстояние между землей и Солнцем; угол падения солнечных лучей; форма Земли (предопределяет убывание интенсивности радиации от экватора к полюсам). В этом основная причина выделения тепловых поясов и, следовательно, причина существования климатических зон.

4. Влияние широты местности на распределение тепла, корректируется рядом факторов: рельеф; распределение суши и моря; влияние холодных и теплых морских течений; циркуляция атмосферы.

5. Распределение солнечной теплоты осложняется еще и тем, что на закономерности горизонтального (вдоль земной поверхности) распределения радиации и тепла накладываются закономерности и особенности вертикального распределения.

Суточным ходом температуры воздуха называется изменение температуры воздуха в течение суток. В общем, он отражает ход температуры земной поверхности, но моменты наступления максимумов и минимумов несколько запаздывают: максимум наступает в 14 часов, минимум после восхода солнца.

Суточная амплитуда температуры воздуха – разница между максимальной и минимальной температурой воздуха в течение суток. Она выше на суше, чем над океаном, уменьшается при движении в высокие широты и возрастает в местах с оголенной почвой. Наибольшая амплитуда в тропических пустынях – до 40º С. Величина суточной амплитуды температуры воздуха – это один из показателей континентальности климата. В пустынях она намного больше, чем в районах с морским климатом.

Годовой ход температуры воздуха (изменение среднемесячной температуры в течение года) определяется, прежде всего, широтой места. Годовая амплитуда температуры воздуха – разница между максимальной и минимальной среднемесячной температурой.

Географическое распределение температуры воздуха показывают с помощью изотерм – линий, соединяющих на карте точки с одинаковыми температурами. Распределение температуры воздуха зонально, годовые изотермы в целом имеют субширотное простирание и соответствуют годовому распределению радиационного баланса (рис.10, 11).

В среднем за год самой теплой параллелью является 10º с.ш. с температурой +27º С – это термический экватор . Летом термический экватор смещается до 20º с.ш., зимой – приближается к экватору на 5º с.ш.

Рис. 10. Распределение средней температуры воздуха в июле

Рис. 11. Распределение средней температуры воздуха в январе

Смещение термического экватора в СП объясняется тем, что в СП площадь суши, расположенная в низких широтах, больше по сравнению с ЮП, а она в течение года имеет более высокие температуры.

Тепло по земной поверхности распределено зонально-регионально. Помимо географической широты, на распределение температур на Земле влияют характер распределения суши и моря, рельеф, высота местности над уровнем моря, морские и воздушные течения.

Широтное распределение годовых изотерм нарушают теплые и холодные течения. В умеренных широтах СП западные берега, омываемые теплыми течениями, теплее восточных берегов, вдоль которых проходят холодные течения. Следовательно, изотермы у западных берегов изгибаются к полюсу, у восточных – к экватору.

Средняя годовая температура СП +15,2º С, а ЮП +13,2º С. Минимальная температура в СП достигала –77º С (Оймякон) (абсолютный минимум СП) и –68º С (Верхоянск). В ЮП минимальные температуры гораздо ниже; на станциях «Советская» и «Восток» была отмечена температура –89,2º С (абсолютный минимум ЮП). Минимальная температура в безоблачную погоду в Антарктиде может опускаться до –93º С. Самые высокие температуры наблюдаются в пустынях тропического пояса: в Триполи +58º С, в Калифорнии в Долине Смерти, отмечена температура +56,7º С.

О том, насколько материки и океаны влияют на распределение температур, дают представление карты изономал (изономалы – линии, соединяющие точки с одинаковыми аномалиями температур). Аномалии представляют собой отклонения фактических температур от среднеширотных. Аномалии бывают положительные и отрицательные. Положительные аномалии наблюдаются летом над подогретыми материками. Над Азией температуры выше среднеширотных на 4º С. Зимой положительные аномалии располагаются над теплыми течениями (над теплым Северо-Атлантичеким течением у берегов Скандинавии температура выше нормы на 28º С). Отрицательные аномалии ярко выражены зимой над охлажденными материками и летом – над холодными течениями. Например, в Оймяконе зимой температура на 22º С ниже нормы.

На Земле выделяют следующие тепловые пояса (за границы тепловых поясов приняты изотермы):

1. Жаркий , ограничен в каждом полушарии годовой изотермой +20º С, проходящий вблизи 30º с. ш. и ю.ш.

2. Два умеренных пояса , которые в каждом полушарии лежат между годовой изотермой +20º С и +10º С самого теплого месяца (соответственно июля или января).

3. Два холодных пояса , граница проходит по изотерме 0º С самого теплого месяца. Иногда выделяют области вечного мороза , которые располагаются вокруг полюсов (Шубаев, 1977).

Таким образом:

1. Единственным источником энергии, имеющим практическое значение для хода экзогенных процессов в ГО, является Солнце. Тепло от Солнца поступает в мировое пространство в форме лучистой энергии, которая затем, поглощенная Землей, превращается в энергию тепловую.

2. Солнечный луч на своем пути подвергается многочисленным воздействиям (рассеяние, поглощение, отражение) со стороны различных элементов пронизываемой им среды и тех поверхностей, на которые он падает.

3. На распределение солнечной радиации влияют: расстояние между землей и Солнцем, угол падения солнечных лучей, форма Земли (предопределяет убывание интенсивности радиации от экватора к полюсам). В этом основная причина выделения тепловых поясов и, следовательно, причина существования климатических зон.

4. Влияние широты местности на распределение тепла, корректируется рядом факторов: рельеф; распределение суши и моря; влияние холодных и теплых морских течений; циркуляция атмосферы.

5. Распределение солнечной теплоты осложняется еще и тем, что на закономерности горизонтального (вдоль земной поверхности) распределения радиации и тепла накладываются закономерности и особенности вертикального распределения.

Общая циркуляция атмосферы

В атмосфере формируются воздушные потоки разного масштаба. Они могут охватывать весь земной шар, а по высоте – тропосферу и нижнюю стратосферу, или воздействовать только на ограниченный участок территории. Воздушные потоки обеспечивают перераспределение тепла и влаги между низкими и высокими широтами, заносят влагу вглубь континента. По площади распространения выделяют ветры общей циркуляции атмосферы (ОЦА), ветры циклонов и антициклонов, местные ветры. Главной причиной образования ветров является неравномерное распределение давления по поверхности планеты.

Давление. Нормальное атмосферное давление – вес атмосферного столба сечением 1 см 2 на уровне океана при 0ºС на 45º широты. Оно уравновешивается столбиком ртути в 760 мм. Нормальное атмосферное давление равно 760 мм ртутного столба или 1013,25 мб. Давление в СИ измеряется в паскалях (Па): 1 мб = 100 Па. Нормальное атмосферное давление равно 1013,25 гПа. Самое низкое давление, которое наблюдалось на Земле (на уровне моря), 914 гПа (686 мм); самое высокое – 1067,1 гПа (801 мм).

Давление с высотой понижается, так как мощность вышележащего слоя атмосферы уменьшается. Расстояние в метрах, на которое надо подняться или опуститься, чтобы атмосферное давление изменилось на 1 гПа, называется барической ступенью . Барическая ступень на высоте от 0 до 1 км составляет 10,5 м, от 1 до 2 км – 11,9 м, 2–3 км – 13,5 м. Величина барической ступени зависит от температуры: с повышением температуры она увеличивается на 0,4 %. В теплом воздухе барическая ступень больше, следовательно, теплые области атмосферы в высоких слоях имеют большее давление, чем холодные. Величина, обратная барической ступени, называется вертикальным барическим градиентом – это изменение давления на единицу расстояния (за единицу расстояния принимается 100 м).

Давление изменяется в результате перемещения воздуха – его оттока из одного места и притока в другое. Движение воздуха обусловлено изменением плотности воздуха (г/см 3), возникающим в результате неравномерного нагрева подстилающей поверхности. Над одинаково нагретой поверхностью с высотой давление равномерно понижается, и изобарические поверхности (поверхности, проведенные через точки с одинаковым давлением) располагаются параллельно друг другу и подстилающей поверхности. В области повышенного давления изобарические поверхности обращены выпуклостью вверх, в области пониженного – вниз. На земной поверхности давление показывается с помощью изобар – линий, соединяющих точки с одинаковым давлением. Распределение атмосферного давления на уровне океана, изображенное с помощью изобар, носит наименование барического рельефа.

Давление атмосферы на земную поверхность, его распределение в пространстве и изменение во времени называется барическим полем . Области высокого и низкого давления, на которые расчленено барическое поле, называются барическими системами .

К замкнутым барическим системам относятся барические максимумы (система замкнутых изобар с повышенным давлением в центре) и минимумы (система замкнутых изобар с пониженным давлением в центре), к незамкнутым – барические гребень (полоса повышенного давления от барического максимума внутри поля пониженного давления), ложбина (полоса пониженного давления от барического минимума внутри поля повышенного давления) и седловина (незамкнутая система изобар между двумя барическими максимумами и двумя минимумами). В литературе встречается понятие «барическая депрессия» – пояс пониженного давления, внутри которого могут быть замкнутые барические минимумы.

Давление по земной поверхности распределено зонально. На экваторев течение года располагается пояс пониженного давления – экваториальная депрессия (менее 1015 гПа). В июле она перемещается в Северное полушарие на 15–20º с.ш., в декабре – в Южное, на 5º ю.ш. В тропических широтах (между 35º и 20º обоих полушарий) давление в течение года повышенное – тропические (субтропические) барические максимумы (более 1020 гПа). Зимой над океанами и над сушей возникает сплошной пояс повышенного давления (Азорский и Гавайский – СП; Ю-Атлантический, Ю-Тихоокеанский и Ю-Индийский – ЮП). Летом повышенное давление сохраняется только над океанами, над сушей давление уменьшается, возникают термические депрессии (Ирано-Тарский минимум – 994 гПа). В умеренных широтах СП летом формируется сплошной пояс пониженного давления , однако барическое поле дисимметрично: в ЮП в умеренных и субполярных широтах над водной поверхностью весь год существует полоса пониженного давления (Приантарктический минимум - до 984 гПа); в СП в связи с чередованием материковых и океанических секторов барические минимумы выражены только над океанами (Исландский и Алеутский – давление в январе 998 гПа), зимой над материками из-за сильного охлаждения поверхности возникают барические максимумы. В полярных широтах, над ледяными щитами Антарктиды и Гренландии давление в течение года повышенное – 1000 гПа (низкие температуры – воздух холодный и тяжелый) (рис. 12, 13).

Устойчивые области повышенного и пониженного давления, на которые распадается барическое поле у поверхности земли, называют центрами действия атмосферы . Существуют территории, над которыми в течение года давление сохраняется постоянным (преобладают барические системы одного типа, либо максимумы, либо минимумы), здесь формируются постоянные центры действия атмосферы:

– экваториальная депрессия;

– Алеутский минимум (умеренные широты СП);

– Исландский минимум (умеренные широты СП);

– зона пониженного давления умеренных широт ЮП (Приантарктический пояс пониженного давления);

– субтропические зоны высокого давления СП:

Азорский максимум (Северо-Атлантический максимум)

Гавайский максимум (Северо-Тихоокеанский максимум)

– субтропические зоны высокого давления ЮП:

Южно-Тихоокеанский максимум (ю-зап. Ю.Америки)

Южно-Атлантический максимум (антициклон о. Св. Елены)

Южно-Индийский максимум (антициклон о. Маврикий)

– Антарктический максимум;

– Гренландский максимум.

Сезонные барические системы образуются в том случае, если давление по сезонам изменяет знак на обратный: на месте барического максимума возникает барический минимум и наоборот. К сезонным барическим системам относятся:

– летний Южно-Азиатский минимум с центром около 30º с.ш. (997 гПа)

– зимний Азиатский максимум с центром над Монголией (1036 гПа)

– летний Мексиканский минимум (Северо-Американская депрессия) – 1012 гПа

– зимний Северо-Американский и Канадский максимумы (1020 гПа)

– летние (январские) депрессии над Австралией, Южной Америкой и южной Африкой уступают место зимой австралийскому, южноамериканскому и южноафриканскому антициклонам.

Ветер. Горизонтальный барический градиент. Движение воздуха в горизонтальном направлении называется ветром. Ветер характеризуется скоростью, силой и направлением. Скорость ветра – расстояние, которое проходит воздух за единицу времени (м/с, км/ч). Сила ветра – давление, оказываемое воздухом на площадку в 1 м 2 , расположенную перпендикулярно движению. Сила ветра определяется в кг/м 2 или в баллах по шкале Бофорта (0 баллов – штиль, 12 – ураган).

Скорость ветра определяется горизонтальным барическим градиентом – изменением давления (падение давления на 1 гПа) на единицу расстояния (100 км) в сторону уменьшения давления и перпендикулярно изобарам. Кроме барометрического градиента на ветер действуют вращение Земли (сила Кориолиса), центробежная сила и трение.

Сила Кориолиса отклоняет ветер вправо (в ЮП влево) от направления градиента. Центробежная сила действует на ветер в замкнутых барических системах – циклонах и антициклонах. Она направлена по радиусу кривизны траектории в сторону ее выпуклости. Сила трения воздуха о земную поверхность всегда уменьшает скорость ветра. Трение сказывается в нижнем, 1000-метровом слое, называемом слоем трения . Движение воздуха при отсутствии силы трения называется градиентным ветром . Градиентный ветер, дующий вдоль параллельных прямолинейных изобар, называется геострофическим , вдоль криволинейных замкнутых изобар – геоциклострофическим . Наглядное представление о повторяемости ветров определенных направлений дает диаграмма «роза ветров».

В соответствии с барическим рельефом существуют следующие зоны ветров:

– приэкваториальный пояс штилей (ветры сравнительно редки, так как господствуют восходящие движения сильно нагретого воздуха);

– зоны пассатов северного и южного полушарий;

– области затишья в антициклонах субтропического пояса высокого давления (причина – господство нисходящих движений воздуха);

– в средних широтах обоих полушарий – зоны преобладания западных ветров;

– в околополярных пространствах ветры дуют от полюсов в сторону барических депрессий средних широт, т.е. здесь обычны ветры с восточной составляющей.

Общая циркуляция атмосферы (ОЦА) – система воздушных потоков планетарного масштаба, охватывающая весь земной шар, тропосферу и нижнюю стратосферу. В циркуляции атмосферы выделяют зональные и меридиональные переносы. К зональным переносам, развивающимся в основном в субширотном направлении, относятся:

– западный перенос, господствующий на всей планете в верхней тропосфере и нижней стратосфере;

– в нижней тропосфере, в полярных широтах – восточные ветры; в умеренных широтах – западные ветры, в тропических и экваториальных широтах – восточные (рис.14).

от полюса к экватору.

В самом деле, воздух на экваторе в приземном слое атмосферы сильно прогревается. Теплый и влажный воздух поднимается вверх, объем его возрастает, и в верхней тропосфере возникает высокое давление. У полюсов из-за сильного охлаждения приземных слоев атмосферы воздух сжимается, объем его уменьшается и наверху давление падает. Следовательно, в верхних слоях тропосферы возникает переток воздуха от экватора к полюсам. Благодаря этому масса воздуха у экватора, а значит, и давление у подстилающей поверхности уменьшаются, а на полюсах возрастает. В приземном слое начинается движение от полюсов к экватору. Вывод: солнечная радиация формирует меридиональную составляющую ОЦА.

На однородной вращающейся Земле действует еще и сила Кориолиса. Наверху сила Кориолиса отклоняет поток в СП вправо от направления движения, т.е. с запада на восток. В ЮП движение воздуха отклоняется влево, т.е. опять с запада на восток. Поэтому вверху (в верхней тропосфере и нижней стратосфере, в интервале высот от 10 до 20 км, давление уменьшается от экватора к полюсам) отмечен западный перенос, он отмечен для всей Земли в целом. В общем, движение воздуха происходит вокруг полюсов. Следовательно, сила Кориолиса формирует зональный перенос ОЦА.

Внизу у подстилающей поверхности движение более сложное, влияние оказывает неоднородная подстилающая поверхность, т.е. расчленение ее на материки и океаны. Образуется сложная картина основных воздушных потоков. От субтропических поясов высокого давления воздушные потоки оттекают к экваториальной депрессии и в умеренные широты. В первом случае образуются восточные ветры тропических-экваториальных широт. Над океанами благодаря постоянным барическим максимумам они существуют круглый годпассаты – ветры экваториальных периферий субтропических максимумов, постоянно дующие только над океанами; над сушей прослеживаются не всюду и не всегда (перерывы вызываются ослаблением субтропических антициклонов из-за сильного прогрева и перемещения в эти широты экваториальной депрессии). В СП пассаты имеют северо-восточное направление, в ЮП – юго-восточное. Пассаты обоих полушарий сходятся вблизи экватора. В области их сходимости (внутритропическая зона конвергенции) возникают сильные восходящие токи воздуха, образуются кучевые облака и выпадают ливневые осадки.

Ветровой поток, идущий в умеренные широты от тропического пояса повышенного давления, формирует западные ветры умеренных широт. Они усиливаются в зимнее время, так как над океаном в умеренных широтах разрастаются барические минимумы, увеличивается барический градиент между барическими минимумами над океанами и барическими максимумами над сушей, следовательно, увеличивается и сила ветров. В СП направление ветров юго-западное, в ЮП – северо-западное. Иногда эти ветры называют антипассатами, но генетически они с пассатами не связаны, а являются частью общепланетарного западного переноса.

Восточный перенос. Преобладающими ветрами в полярных широтах являются северо-восточные в СП и юго-восточные – в ЮП. Воздух перемещается от полярных областей повышенного давления в сторону пояса пониженного давления умеренных широт. Восточный перенос представлен также пассатами тропических широт. Вблизи экватора восточный перенос охватывает почти всю тропосферу, и западного переноса здесь нет.

Анализ по широтам основных частей ОЦА позволяет выделить три зональных незамкнутых звена:

– полярное: в нижней тропосфере дуют восточные ветры, выше – западный перенос;

– умеренное звено: в нижней и верхней тропосфере – ветры западных направлений;

– тропическое звено: в нижней тропосфере – восточные ветры, выше – западный перенос.

Тропическое звено циркуляции получило название ячейки Гадлея (автор наиболее ранней схемы ОЦА, 1735 г.), умеренное звено – ячейки Фрреля (американский метеоролог). В настоящее время существование ячеек подвергается сомнению (С.П. Хромов, Б.Л. Дзердиевский), однако в литературе упоминание о них сохраняется.

Струйные течения – ветры ураганной силы, дующие над фронтальными зонами в верхней тропосфере и нижней стратосфере. Особенно ярко они выражены над полярными фронтами, скорость ветра достигает 300–400 км/ч из-за больших градиентов давления и разреженности атмосферы.

Меридиональные переносы осложняют систему ОЦА и обеспечивают междуширотный обмен теплотой и влагой. Главными меридиональными переносами являются муссоны – сезонные ветры, меняющие летом и зимой направление на противоположное. Выделяют муссоны тропические и внетропические.

Тропические муссоны возникают по причине термических различий между летним и зимним полушариями, распределение суши и моря только усиливает, осложняет или стабилизирует это явление. В январе в СП располагается почти непрерывная цепь антициклонов: над океанами – постоянных субтропических, над материками – сезонных. В то же время в ЮП лежит сдвинутая туда экваториальная депрессия. В результате образуется перенос воздуха из СП в ЮП. В июле при обратном соотношении барических систем, происходит перенос воздуха через экватор из ЮП в СП. Таким образом, тропические муссоны – это не что иное, как пассаты, которые в некоторой, близкой к экватору полосе приобретают иное свойство – сезонную смену генерального направления. При помощи тропических муссонов осуществляется обмен воздуха между полушариями , а на между сушей и морем, тем более, что в тропиках термический контраст между сушей и морем вообще невелик. Область распространения тропических муссонов вся лежит между 20º с.ш. и 15º ю.ш. (тропическая Африка к северу от экватора, восточная Африка к югу от экватора; южная Аравия; Индийский океан до Мадагаскара на западе и до северной Австралии на востоке; Индостан, Индокитай, Индонезия (без Суматры), Восточный Китай; в Ю.Америке – Колумбия). Например, муссонное течение, зарождающееся в антициклоне над северной Австралией и идущее в Азию, направляется, в сущности, с одного материка на другой; океан в данном случае служит лишь промежуточной территорией. Муссоны в Африке есть обмен воздуха между сушей одного и того же материка, лежащих в разных полушариях, а над частью Тихого океана муссон дует с океанической поверхности одного полушария на океаническую поверхность другого.

В образовании внетропических муссонов ведущую роль играет термический контраст между сушей и морем. Здесь муссоны возникают между сезонными антициклонами и депрессиями, одни из которых лежат на материке другие на океане. Так, зимние муссоны на Дальнем востоке есть следствие взаимодействия антициклона над Азией (с центром в Монголии) и постоянной Алеутской депрессии; летний – следствие антициклона над северной частью Тихого океана и депрессии над внетропической частью Азиатского материка.

Внетропические муссоны лучше всего выражены на Дальнем Востоке (включая Камчатку), в Охотском море, в Японии, на Аляске и побережье Северного Ледовитого океана.

Одно из главных условий проявления муссонной циркуляции – отсутствие циклонической деятельности (над Европой и С. Америкой муссонная циркуляция отсутствует вследствие интенсивности циклонической деятельности, она «смывается» западным переносом).

Ветры циклонов и антициклонов. В атмосфере при встрече двух воздушных масс с разными характеристиками постоянно возникают крупные атмосферные вихри – циклоны и антициклоны. Они сильно усложняют схему ОЦА.

Циклон – плоский восходящий атмосферный вихрь, проявляющийся у земной поверхности областью пониженного давления, с системой ветров от периферии к центру против часовой стрелки в СП и по часовой – в ЮП.

Антициклон – плоский нисходящий атмосферный вихрь, проявляющийся у земной поверхности областью повышенного давления, с системой ветров от центра к периферии по часовой стрелке в СП и против часовой – в ЮП.

Вихри плоские, так как их горизонтальные размеры – тысячи квадратных километров, а вертикальные – 15–20 км. В центре циклона наблюдаются восходящие токи воздуха, в антициклоне – нисходящие.

Выделяют циклоны фронтальные, центральные, тропические и термические депрессии.

Фронтальные циклоны образуются на Арктическом и Полярном фронтах: на Арктическом фронте Северной Атлантики (около восточных берегов Северной Америки и у Исландии), на Арктическом фронте в северной части Тихого океана (около восточных берегов Азии и у Алеутских островов). Циклоны обычно существуют несколько суток, двигаясь с запада на восток со скоростью около 20-30 км/ч. На фронте возникает серия циклонов, в серии по три-четыре циклона. Каждый следующий циклон находится на более молодой стадии развития и двигается быстрее. Циклоны нагоняют друг друга, смыкаются, образуя центральные циклоны – второй тип циклона. Благодаря малоподвижным центральным циклонам поддерживается область пониженного давления над океанами и в умеренных широтах.

Циклоны, зародившиеся на севере Атлантического океана, движутся в Западную Европу. Наиболее часто они проходят через Великобританию, Балтийское море, Санкт-Петербург и далее на Урал и в Западную Сибирь или по Скандинавии, Кольскому полуострову и далее или к Шпицбергену, или по северной окраине Азии.

Северотихоокеанские циклоны идут в северо-западную Америку, а также северо-восточную Азию.

Тропические циклоны образуются на тропических фронтах чаще всего между 5º и 20º с. и ю. ш. Возникают они над океанами в конце лета и осенью, когда вода нагрета до температуры 27–28º С. Мощный подъем теплого и влажного воздуха приводит к выделению огромного количества теплоты при конденсации, что определяет кинетическую энергию циклона и низкое давление в центре. Циклоны двигаются с востока на запад по экваториальной периферии постоянных барических максимумов на океанах. Если тропический циклон достигает умеренных широт, он расширяется, теряет энергию и уже как внетропический циклон начинает двигаться с запада на восток. Скорость движения самого циклона небольшая (20–30 км/ч), но ветры в нем могут иметь скорость до 100 м/с (рис. 15).

Рис. 15. Распространение тропических циклонов

Основные районы возникновения тропических циклонов: восточное побережье Азии, северное побережье Австралии, Аравийское море, Бенгальский залив; Карибское море и Мексиканский залив. В среднем за год бывает около 70 тропических циклонов со скоростью ветра более 20 м/с. В Тихом океане тропические циклоны называются тайфунами, в Атлантическом – ураганами, у берегов Австралии – вилли-вилли.

Термические депрессии возникают на суше из-за сильного перегрева участка поверхности, поднятия и растекания воздуха над ним. В результате у подстилающей поверхности образуется область пониженного давления.

Антициклоны подразделяются на фронтальные, субтропические антициклоны динамического происхождения и стационарные.

В умеренных широтах в холодном воздухе возникают фронтальные антициклоны, которые перемещаются сериями с запада на восток со скоростью 20–30 км/ч. Последний заключительный антициклон достигает субтропиков, стабилизируется и образует субтропический антициклон динамического происхождения. К ним относятся постоянные барические максимумы на океанах. Стационарный антициклон возникает над сушей в зимний период в результате сильного выхолаживания участка поверхности.

Зарождаются и устойчиво держатся антициклоны над холодными поверхностями Восточной Арктики, Антарктиды, а зимой и Восточной Сибири. При прорыве арктического воздуха с севера зимой антициклон устанавливается над всей Восточной Европой, а иногда захватывает Западную и Южную.

За каждым циклоном следует и перемещается с той же скоростью антициклон, который заключает собой всякую циклоническую серию. При движении с запада на восток циклоны испытывают отклонение к северу, а антициклоны – к югу в СП. Причина отклонений объясняется влиянием силы Кориолиса. Следовательно, циклоны начинают двигаться на северо-восток, а антициклоны на юго-восток. Благодаря ветрам циклонов и антициклонов наблюдается обмен между широтами теплом и влагой. В областях повышенного давления преобладают токи воздуха сверху вниз – воздух сухой, облаков нет; в областях пониженного давления – снизу вверх – образуются облака, выпадают осадки. Внедрение теплых воздушных масс называется «волнами тепла». Перемещение тропических воздушных масс в умеренные широты летом вызывает засуху, зимой – сильные оттепели. Внедрение арктических воздушных масс в умеренные широты – «волны холода» – вызывает похолодание.

Местные ветры – ветры, возникающие на ограниченных участках территории в результате влияния местных причин. К местным ветрам термического происхождения относятся бризы, горно-долинные ветры, влияние рельефа вызывает образование фенов и бора.

Бризы возникают на берегах океанов, морей, озер, там, где велики суточные колебания температур. В крупных городах сформировались городские бризы. Днем, когда суша нагрета сильнее, над ней возникает восходящее движение воздуха и отток его наверху в сторону более холодного. В приземных слоях ветер дует в сторону суши, это дневной (морской) бриз. Ночной (береговой) бриз возникает ночью. Когда суша охлаждается сильнее, чем вода, и в приземном слое воздуха ветер дует с суши на море. Морские бризы выражены сильнее, их скорость равна 7 м/с, полоса распространения – до 100 км.

Горно-долинные ветры образуют ветры склонов и собственно горно-долинные и имеют суточную периодичность. Ветры склонов – результат различного нагрева поверхности склона и воздуха на той же высоте. Днем воздух на склоне нагревается сильнее, и ветер дует вверх по склону, ночью склон охлаждается тоже сильнее и ветер начинает дуть вниз по склону. Собственно горно-долинные ветры вызваны тем, что воздух в горной долине нагревается и охлаждается сильнее, чем на той же высоте на соседней равнине. Ночью ветер дует в сторону равнины, днем – в сторону гор. Обращенный в сторону ветра склон, называется наветренным, а противоположный – подветренным.

Фен – теплый сухой ветер с высоких гор, часто покрытых ледниками. Возникает он благодаря адиабатическому охлаждению воздуха на наветренном склоне и адиабатическому нагреву – на подветренном склоне. Наиболее типичный фен возникает в случае, когда воздушное течение ОЦА переваливает через горный хребет. Чаще встречается антициклональный фен, он образуется в том случае, если над горной страной стоит антициклон. Фены наиболее часты в переходные сезоны, продолжительность их несколько суток (в Альпах в году 125 дней с фенами). В горах Тянь-Шаня подобные ветры называют кастек, в Средней Азии – гармсиль, в Скалистых горах – чинук. Фены вызывают раннее цветение садов, таяние снега.

Бора – холодный ветер, дующий с невысоких гор в сторону теплого моря. В Новороссийске он называется норд-остом, на Апшеронском полуострове – нордом, на Байкале – сармой, в долине Роны (Франция) – мистралью. Возникает бора зимой, когда перед хребтом, на равнине, образуется область повышенного давления, где формируется холодный воздух. Перевалив невысокий хребет, холодный воздух устремляется с большой скоростью в сторону теплой бухты, где давление низкое, скорость может достигать 30 м/с, температура воздуха резко падает до –5ºС.

К мелкомасштабным вихрям относятся смерчи и тромбы (торнадо) . Вихри над морем называются смерчами, над сушей – тромбами. Зарождаются смерчи и тромбы обычно в тех же местах, что и тропические циклоны, в жарком влажном климате. Основным источником энергии служит конденсация водяных паров, при которой выделяется энергия. Большое число торнадо в США объясняется приходом влажного теплого воздуха с Мексиканского залива. Вихрь двигается со скоростью 30–40 км/ч, но скорость ветра в нем достигает 100 м/с. Тромбы возникают обычно поодиночке, вихри – сериями. В 1981 г. у побережья Англии в течение пяти часов сформировалось 105 смерчей.

Понятие о воздушных массах (ВМ). Анализ вышеизложенного показывает, что тропосфера не может быть физически однородной во всех своих частях. Она разделяется, не переставая быть единой и цельной, на воздушные массы – крупные объемы воздуха тропосферы и нижней стратосферы, обладающие относительно однородными свойствами и движущиеся как единое целое в одном из потоков ОЦА. Размеры ВМ сопоставимы с частями материков, протяженность тысячи километров, мощность – 22–25 км. Территории, над которыми формируются ВМ, называются очагами формирования. Они должны обладать однородной подстилающей поверхностью (суша или море), определенными тепловыми условиями и временем, необходимым для их образования. Подобные условия существуют в барических максимумах над океанами, в сезонных максимумах над сушей.

Типичные свойства ВМ имеет только в очаге формирования, при перемещении она трансформируется, приобретая новые свойства. Приход тех или иных ВМ вызывает резкие смены погоды непериодического характера. По отношению к температуре подстилающей поверхности ВМ делят на теплые и холодные. Теплая ВМ перемещается на холодную подстилающую поверхность, она приносит потепление, но сама охлаждается. Холодная ВМ приходит на теплую подстилающую поверхность и приносит похолодание. По условиям образования ВМ подразделяют на четыре типа: экваториальные, тропические, полярные (воздух умеренных широт) и арктические (антарктическая). В каждом типе выделяется два подтипа – морской и континентальный. Для континентального подтипа , образующегося над материками, характерна большая амплитуда температур и пониженная влажность. Морской подтип формируется над океанами, следовательно, относительная и абсолютная влажность у него повышены, амплитуды температур значительно меньше континентальных.

Экваториальные ВМ образуются в низких широтах, характеризуются высокими температурами и большой относительной и абсолютной влажностью. Эти свойства сохраняются и над сушей и над морем.

Тропические ВМ формируются в тропических широтах, температура в течение года не опускается ниже 20º С, относительная влажность невелика. Выделяют:

– континентальные ТВМ, формирующиеся над материками тропических широт в тропических барических максимумах – над Сахарой, Аравией, Тар, Калахари, а летом в субтропиках и даже на юге умеренных широт – на юге Европы, в Средней Азии и Казахстане, в Монголии и Северном Китае;

– морские ТВМ, образующиеся над тропическими акваториями – в Азорском и Гавайском максимумах; характеризуются высокой температурой и влагосодержанием, но низкой относительной влажностью.

Полярные ВМ , или воздух умеренных широт, образуются в умеренных широтах (в антициклонах умеренных широт из арктических ВМ и воздуха, пришедшего из тропиков). Температуры зимой отрицательные, летом положительные, годовая амплитуда температур значительна, абсолютная влажность увеличивается летом и уменьшается зимой, относительная влажность средняя. Выделяют:

– континентальный воздух умеренных широт (кУВ), который формируется над обширными поверхностями континентов умеренных широт, зимой сильно охлажден и устойчив, погода в нем ясная с сильными морозами; летом сильно прогревается, в нем возникают восходящие токи;

Ещё одной особенностью суточного хода температуры можно считать отсутствие сезонной изменчивости у суточного максимума температуры. Весь год он наблюдается в 13-15 часов. И наличие суточного хода у суточного минимума температуры. В холодную часть года он наблюдается в 5-8 часов, в тёплую половину года - в 3-5 часов. Существенной характеристикой суточного хода температуры воздуха является разность температуры самого тёплого и самого холодного часа - амплитуда. Эта разность постепенно увеличивается с 2,6° в декабре до 6,3° в сентябре, когда ночи уже бывают по-осеннему прохладными, а дни по-летнему жаркими.

Диапазон изменения средних суточных температур воздуха на протяжении года составил от -12,9° до +32°. Анализируя (табл. 2.6), видим самый холодный месяц года - январь, самый тёплый - август.

Отрицательная средняя суточная температура воздуха наблюдается в районе Туапсе в январе, феврале, марте, ноябре и декабре. За исследуемый период наблюдалось 413 суток с отрицательной средней суточной температурой, в том числе 159 - в январе, 127 - в феврале, 44 - в марте, 15 - в ноябре и 68 - в декабре. Средняя суточная температура воздуха в пределах 16,1-17° наблюдается в районе Туапсе за исключением января. Средняя суточная температура 15,1°-16° кроме января не наблюдается еще и в июле. И еще интересно, средняя суточная температура в пределах 11,1°-15° наблюдается круглый год за исключением июля и августа.

Средняя суточная температура воздуха выше 25° наблюдается в районе Туaпсе в период с мая по сентябрь. Всего за исследуемый период было отмечено 454 дня со средней суточной температурой выше 25°, в том числе 1 день в мае, 16 дней в июне, 191 день в июле, 231 день в августе и 15 дней в сентябре. Температура воздуха не остаётся неизменной, а из года в год испытывает большие колебания, поэтому даты устойчивого перехода её через различные пределы значительно отклоняются от средней многолетней даты. Так, в отдельные тёплые вёсны может не наблюдаться устойчивого перехода средней суточной температуры воздуха через 20°, а переход через 15 и 20° происходит на месяц раньше. В другие годы наоборот весна бывает холодной и только к концу июня средняя суточная температура достигает 15°.

Таким образом, в районе Туапсе в среднем наблюдается 131 день со средне суточной температурой воздуха ниже 10°, 74 дня со средней суточной температурой 10-15°, 74 дня со средней суточной температурой 15-20° и 66 дней со средней суточной температурой выше 20°.

В период, когда средняя суточная температура воздуха бывает ниже 10° могут наблюдаться дни морозов.

И, хотя устойчивого морозного периода в описываемом районе нет, при вторжении на побережье холодных масс воздуха, температура ежегодно понижается до отрицательных значений.

Таблица 2.6 Суточный ход температуры воздуха

Суточ. амплит.

Обычно морозы начинаются во второй-третьей декаде ноября, а прекращаются в первой - второй декаде марта. Днём с морозом считается такой, в котором хотя бы в один из сроков наблюдений температура по минимальному термометру была 0° и ниже 11, с. 115 - 125.

Характерной особенностью холодного периода является то, что даже в относительно холодные дни, когда средняя суточная температура воздуха бывает отрицательной, часто в дневные часы наблюдаются оттепели и максимальная температура воздуха бывает положительной. Непрерывность морозных периодов постоянно нарушается оттепелями.

Остановимся подробнее также на характере распределения жарких дней в районе Туапсе (табл. 2.7). Дни со средней суточной температурой от 20,1-до 25° можно отнести к умеренно жарким, а со средней суточной температурой выше 25° - к жарким. Заметим, что в дни,- когда средняя суточная температура воздуха бывает 20° и выше, наблюдённая днём достигает 30-35°, а иногда и выше.

Таблица 2. 7 Повторяемость периодов с жаркими днями различной продолжительности

Наблюдаются жаркие дни в период с мая по сентябрь, но преимущественно в июле и августе. Так, за 35 лет в районе Туапсе наблюдалась 2741 день с умеренно жаркой погодой и 454 жарких дня, в том числе 422 жарких дня наблюдались в июле и августе. За весь период наблюдений только три раза средняя суточная температура воздуха была выше 30°.

Дни, в которые температура воздуха бывает выше 19°С, а упругость водяного пара выше 18,8 мб, можно отнести к дням с душной погодой. В (табл. 2.8), случаи с душной погодой выделены. Душная погода в районе Туапсе наблюдается в теплую часть года и ночью и днем, причем ночью на душную погоду приходится 38 % случаев, а днем - 60 % случаев. Наибольшая вероятность душной погоды ночью - про достижении температуры воздуха 21-23° при относительной влажности 81-90 %. Днем погода бывает душной обычно при температуре воздуха 25-27° и влажности воздуха 61-80 %.

Таблица 2.8 Повторяемость (%) различных значений температуры воздуха при определенных величинах относительной влажности в июле (1969-1978 гг.).

Температура воздуха, °С

Следует обратить внимание на то, что в районе Туапсе высокая влажность воздуха может наблюдаться и в холодное время года. И сочетание низкой температуры и высокой влажности воздуха организмом человека воспринимается очень тяжело. При этом очень остро ощущается холод, трудно согреться. Кроме того, холодная погода воспринимается организмом человека по-разному в тихую и ветреную погоду. Сочетание отрицательной температуры воздуха с сильным ветром как бы удваивает ощущение холода. В районе Туапсе такое сочетание бывает в холодный период года при сильных северо-восточных ветрах.

В среднем за период с апреля по ноябрь в районе Туапсе наблюдалось около 91 дня с умеренно жаркой и жаркой погодой, в том числе 56 дней из них приходятся на июль и август.

В повседневной жизни особую важность для человека приобретают ежедневные температуры.

Самая низкая средняя суточная температура воздуха в Туапсе отмечается в период с 14 января по 10 февраля. В наиболее суровом за период исследования январе 1972 года 14 и 15 числа средняя суточная температура воздуха была ниже -11°, а 13 января 1964 года наблюдалась самая низкая средняя суточная температура и составила -12,6°. Такое понижение температуры воздуха с возникновением боры - сильного северо-восточного ветра. Отрицательная средняя суточная температура воздуха может наблюдаться в исследуемом районе в январе, феврале, марте и декабре.

Благодаря активной зимней циклонической деятельности весьма часто на Черное море поступают теплые воздушные массы с юга. Отметим, что средняя суточная температура воздуха, например в январе, может изменяться в пределах от -12,6° до 14,4°, а в феврале - от -10,3° до 15,3°. Т.е. и в зимние месяцы в районе Туапсе могут наблюдаться теплые солнечные дни.

Устойчивое и сначала медленное повышение средней суточной температуры воздуха начинается с конца марта и продолжается до июля. Для весенних месяцев характерна смена относительно жарких дней относительно холодными. Так, с 29 апреля по 1 мая 1986 года средняя суточная температура была на 7-9° выше средней многолетней температуры, а с 5 по 9 мая этого же года она упала на 6-7° ниже средней многолетней. Такие резкие перепады температуры обычно сопровождаются различными стихийными явлениями (ливнями, снегопадами в горах, паводками на реках) и отрицательно отражаются на здоровье людей.

Теплый период года в районе Туапсе начинается с 17 июня и продолжается до 10 сентября. Наиболее высокой средняя многолетняя температура каждого дня бывает с 14 июля по 24 августа и удерживается она в пределах 23,0-24,1°. Этот период года можно считать жарким и в отдельные годы и дни этого периода средняя суточная температура достигает и превышает 25°.

В отдельные годы и этого теплого периода бывает средняя суточная температура воздуха ниже 20°. В последней декаде августа нередко происходит резкое понижение температуры, сопровождаемое интенсивными ливнями. Так было в 1960, 1966, 1978 и 1980 годах, причем в 1980 году минимум температуры составил 10,2°.

Бывают случаи, когда важно знать закономерности распределения не только отдельных метеорологических элементов, но и их комплексов. Важную роль в формировании термического режима играет адвекция теплых или холодных воздушных масс. Характер адвекции зависит от направления воздушных масс. Комплексная обработка температуры воздуха и ветра - термические розы - дает возможность проследить влияние ветра на температуру воздуха.

В зимние месяцы (январь, февраль и декабрь) воздушные массы, пришедшие с северной половины горизонта - холодные, а с южной половины горизонта - теплые. Почти одинаковы розы марта и ноября. В оба месяца холодные массы воздуха приходят с северо-восточной половины горизонта, а теплые - с южной и юго-западной. Только в ноябре понижение и повышение температуры боле выражено, нежели в марте. Интересна роза апреля. Некоторое повышение температуры происходит лишь при восточном и западном переносе. Ветры остальных румбов приносят в район Туапсе холодный воздух. Заметим, что в апреле вода в море еще не прогрелась, поэтому воздушные массы над морем холоднее. Мало отличается от апрельской роза мая. Правда в мае, кроме западных и восточных ветров, теплый воздух приносят северо-западные и северные ветры. Интересна роза июня. В июне ветры северные, северо-восточные и юго-восточные приносят холодные массы воздуха, ветры восточные и южные - нейтральны, а ветры юго-западные, западные и северо-западные приходят с теплыми массами воздуха. Летом, когда ветры бывают слабее, чем в зимние месяцы, их влияние на температурный режим сказывается меньше. Розы июля, августа и сентября мало отличаются друг от друга. В летние месяцы ветры от севера до юго-востока приходят с относительно холодными массами воздуха, а ветры от юга до запада, наоборот, с теплыми массами воздуха. Роза октября мало отличается от роз зимних месяцев, но несколько иначе ориентирована 11, с. 125 - 131.

Большое практическое значение имеет комплексное изучение температуры и влажности воздуха. Комплексная характеристика для июля раздельно по двум периодам суток: с 9 до 18 часов - день и с 21 до 06 часов - ночь. Обработка данных производилась по градациям температуры воздуха через 2°, а относительной влажности воздуха - через 10%. Материала взяты за 10 лет (1969-1978 гг.).

В районе Туапсе могут наблюдаться аномальные в температурном отношении годы, сезоны, месяцы. На годы со всеми четырьмя нормальными сезонами приходится всего около 3 % всех лет исследуемого периода, на годы с одним аномальным сезоном - 21 %, с двумя аномальными сезонами - 35 %, с тремя аномальными сезонами - 28 % и со всеми четырьмя аномальными сезонами - 10 %. Такие полностью аномальные годы это: 1924, 1938, 1948, 1953, 1962, 1963, 1966, 1972, 1981 и 1984.

атмосфера турбулентный циркуляция воздух

Число : 15.02.2016

Класс: 6«В»

Урок № 42

Тема урока: §39. Температура воздуха и суточный ход температуры

Цель урока:

Обучающая: Сформировать знания о закономерностях распределения температуры воздуха.

Развивающа я : Развивать навыки, умение определять температуру, считать суточную, составлять графики, решать задачи по изменению температур, находить амплитуду температур.

Воспитывающая: Воспитывать стремление к изучению предмета.

Тип урока: комбинированный

Вид урока: проблемное обучение

Оборудование урока: ИКТ, термометры, календари погоды,

I.Организационный момент : Приветствие. Выявление отсутствующих.

II.Проверка домашнего задания :

Тест.

1.Какие причины определяют нагрев Земли?

А полярная ночь и полярный день

Б угол падения солнечных лучей

В смена дня и ночи

Г давление, температура, ветер.

2.Каково различие в нагреве поверхности на экваторе и умеренных широтах:

А экваториальные широты нагреты больше в течении года

Б экваториальные широты нагреты больше летом

В экваториальные широты нагреты одинаково в течении года

3.Сколько поясов освещенности?

А 3 Б 5 В 6 Г 4

4. В чем особенности полярного пояса

А Два раза в год Солнце на тропике

Б В течении года наблюдается полярный день и полярная ночь

В Летом Солнце в зените.

5.Часто ли в тропическом поясе меняется погода

А Да Б Нет В 4 раза в год

III.Подготовка к объяснению новой темы : Написать на доске тему урока, объяснить

IV.Объяснение новой тем ы:

Температура воздуха - степень нагретости воздуха, определяемая при помощи термометра.

Температура воздуха - одна из важнейших характеристик погоды и климата.

Термометр – это прибор для определения температуры воздуха. Термометр представляет собой капиллярную трубку, припаянную к резервуару, наполненную жидкостью (ртуть, спирт). Трубка прикреплена к планке, на которой нанесена шкала термометра. С потепление жидкость в трубке начинает подниматься, с похолоданием – опускаться. Термометры бывают уличные и комнатные.

Суточное изменение температуры воздуха – амплитуда.

Исследования показали, что температура меняется со временем, т. е. в течение суток, месяца, года. Суточное изменение температуры зависит от вращения Земли вокруг своей оси.

Ночью, когда солнечное тепло не поступает, поверхность Земли охлаждается. А днем наоборот – нагревается.

В связи с этим меняется температура воздуха.

Самая низкая температура за сутки –перед восходом солнца.

Самая высокая температура – через 2-3 часа после полудня

За сутки показания температуры на метеостанциях снимают 4 раза: в 1ч, 7ч, 13ч, 19 ч затем суммируются и делят на 4 среднесуточная температура

Например:

1ч +5 0 С, 7ч +7 0 С, 13ч +15 0 С, 19ч +11 0 С,

5 0 С+7 0 С+15 0 С+11 0 С=38 0 С:4=9,5 0 С

V. Усвоение новой темы :

Тест

1. Температура воздуха с высотой:

а) понижается

б) повышается

в) не изменяется

2. Суша в отличие от воды нагревается:

а) медленнее

б) быстрее

3. Температуру воздуха измеряют:

а) барометром

б) термометром

в) гигрометром

а) в 7 часов

б) в 12 часов

в) в 14 часов

5. Колебания температуры в течение суток зависят от:

а) облачности

б) угла падения солнечных лучей

6. Амплитуда – это:

а) сумма всех температур в течение суток

б) разность между самой высокой температурой и самой низкой

7. Средняя температура (+2 о; +4 о; +3 о; -1 о) равна:

VI . Итог урока :

1. определить амплитуду температур, среднюю суточную температуру,

VII. Домашнее задание :

1.§39. Температура воздуха и суточный ход температуры

VII . Выставление оценок:

Оценка учитель ученик

Суточный и годовой ход температуры воздуха зависит от при­тока солнечного тепла и характера подстилающей поверхности. В соответствии с суточным ходом интенсивности солнечной радиации максимальная температура воздуха в течение суток между морем или океаном наступает примерно в 12 час 30 мин, а над суше - около 14- 15. Минимальная же температура воздуха наступает незадолго до восхода или в мо­мент восхода Солнца, т. е. в период наибольшего охлаждения земной поверхности. Разность между максимумом и минимумом температуры воздуха за сутки называется суточной амплитудой темпе­ратуры.

Величина суточной амплитуды температуры воздуха далеко не постоянна и зависит от характера подстилающей поверхности, облачности, влажности воздуха, времени года и, наконец, от ши­роты и высоты места.

Наибольшая суточная амплитуда температуры воздуха бы­вает в южных широтах, над песчаной поверхностью, в теплое время года, при отсутствии облачности и при малой влажности воздуха, т. е. в сухих южных степях или в пустынях. В этих ус­ловиях разность между максимумом и минимумом температуры за сутки может достигать 25-30 и даже 40°.

Наличие низкой облачности, тумана, осадков сильно сглажи­вает суточный ход температуры. Амплитуда температуры в этих случаях незначительна.

Суточная амплитуда температуры воздуха над океанами и крупными морями на большом удалении от берегов невелика и составляет всего 2-3°. Иными словами, существенных измене­ний температуры воздуха в открытом море, (океане) в течение суток, как правило, не бывает. Такой сравнительно ровный су­точный ход над морями объясняется тепловыми свойствами во­ды, заключающимися в малом и медленном ее нагревании и ох­лаждении, что таким же образом сказывается и на температуре прилегающего к водной поверхности воздуха.

Что же касается годового хода температуры воздуха, то он зависит от тех же причин, что и суточный ход. На континентах максимум обычно наступает в июле, минимум - в ян­варе, что совпадает с периодами наивысшего и наинизшего солнцестояний. На океанах и побережьях наблюдается запазды­вание крайних температур: максимум наблюдается в августе, минимум-в феврале или в начале марта.

В экваториальной зоне наблюдаются два максимума темпе­ратуры - после весеннего и осеннего равноденствия, когда высо­та Солнца наибольшая, и два минимума после зимнего и летнего солнцестояний, при наименьшей в году высоте Солнца.

Разность между максимальной и минимальной средней ме­сячной температурой в течение года называется годовой ам­плитудой температуры. Ее величина зависит главным обра­зом от характера подстилающей поверхности и широты места.

Наименьшая годовая амплитуда бывает над океанами, осо­бенно между тропиками, где она составляет всего лишь 1-3°; в умеренных широтах она увеличивается до 5- 10°, а в полярных- еще более.

Наибольшая годовая амплитуда наблюдается над сушей, в глубине континентов в умеренных и высоких широтах, где она может достигать 40-50°, а в отдельных местах - даже 65°. На­пример, в Верхоянске (Якутия) средняя температура ию­ля плюс 15°, а января минус 50°. В низких широтах над сушей годовая амплитуда температуры воздуха сравнительно невелика, что объясняется более равномерным притоком солнечного тепла.

Понравилась статья? Поделиться с друзьями: