Физиологические особенности проходных рыб. Проходные рыбы. Строение и физиологические особенности рыб

Особенности жизни проходных рыб (часть 1)

Миграции пелагических и донных рыб протекают в более или менее однородной среде моря. Рыбам приходится лишь несколько приспособляться к разностям давления, к различным температурам и незначительным изменениям солености воды, но не приходится попадать в совершенно новую среду, которая требовала бы полной перестройки всей физиологической стороны жизни. Совсем не то мы видим при миграциях проходных рыб, которые для размножения поднимаются из моря в реки и достигают верховьев последних. Они вынуждены приспособляться к такой среде, которая нормально для морских рыб смертельна. Опыты, поставленные Сёмнером (Sumner, 1906) над целым рядом морских рыб, показали, что перенесение их из морской воды в пресную вызывает их гибель, часто уже в очень короткий срок. Причиной гибели является изменение осмотического давления крови и полостной жидкости вследствие извлечения окружающей пресной водою солей из тела рыбы. В этом виновны прежде всего жабры: их тонкие оболочки не могут сопротивляться осмосу и пропускают соли.
В силу этого проходным рыбам, которые не менее двух раз в жизни меняют среду (в молодости переходят из пресной воды в морскую, в зрелом состоянии совершают обратный переход), приходится вырабатывать особую способность переносить сильное понижение концентрации солей во внешней среде и удерживать соли в своем теле; не пропуская их через перепонки. Опыты Грина (Green, 1905), определявшего содержание солей в крови чавычи (Ortcorhynchus ischawytscha Walb.) путем замораживания крови, показали, что у рыбы, взятой из моря, точка замерзания крови 0.762°, у рыбы, пробывшей некоторое время в солоноватоводном предустьевом пространстве, - 0.737°, а у рыбы с нерестилища в верховьях реки - 0.628°, что свидетельствует о понижении концентрации солей в крови рыбы всего на одну пятую. Чем достигается такая способность лишь незначительно понижать концентрацию солей в жидкостях тела, нам неизвестно, но проходные рыбы обладают этой способностью в высокой степени.
Кроме резкого понижения концентрации солей, проходным рыбам приходится приспособляться к противодействующему их движению быстрому и сильному течению рек, к совершенно иным условиям температуры воды, к иному содержанию в ней газов, к иной прозрачности; приходится вырабатывать целый ряд новых инстинктов, связанных с жизнью в реке, с преодолением различных препятствий в пути и с избежанием опасностей. Совершенно изумительным и непонятным для нас является направляющий инстинкт, благодаря которому проходные рыбы находят не только ту же реку, в которой они вывелись, но и тот же приток ее и даже будто бы то же самое нерестилище, как утверждают, по крайней мере, некоторые наблюдатели.

Рис. Форма чешуи рыб. а - плакоидная; б - ганоидная; в - циклоидная; г – ктеноидная

Плакоидная - наиболее древняя, сохранилась у хрящевых рыб (акулы, скаты). Состоит из пластинки, на которой возвышается шипик. Старые чешуйки сбрасываются, на их месте возникают новые. Ганоидная - преимущественно у ископаемых рыб. Чешуйки имеют ромбическую форму, тесно сочленяются одна с другой, так что тело оказывается заключенным в панцирь. Чешуйки со временем не меняются. Названием своим чешуя обязана ганоину (дентинообразному веществу), толстым слоем лежащему на костной пластинке. Среди современных рыб ее имеют панцирные щуки и многоперы. Кроме того, она имеется у осетровых в виде пластинок на верхней лопасти хвостового плавника (фулькры) и жучек, разбросанных по телу (модификация нескольких слившихся ганоидных чешуек).
Постепенно видоизменяясь, чешуя теряла ганоин. У современных костистых рыб его уже нет, а чешуйки состоят из костных пластинок (костная чешуя). Эти чешуйки могут быть циклоидными - округлыми, с гладкими краями (карповые) и ктеноидными с зазубренным задним краем (окуневые). Обе формы родственны, но циклоидная как более примитивная встречатся у низкоорганизованных рыб. Бывают случаи, когда в пределах одного вида самцы имеют ктеноидную, а самки - циклоидную чешую (камбалы рода Liopsetta), или даже у одной особи встречаются чешуйки обеих форм.
Размеры и толщина чешуи у рыб сильно различаются- от микроскопических чешуек обыкновенного угря до очень крупных, величиной с ладонь чешуи трехметрового усача-тора, живущего в индийских реках. Лишь немногие рыбы не имеют чешуи. У некоторых она слилась в сплошной неподвижный панцирь, как у кузовка, или образовала ряды тесно соединенных костных пластинок, как у морских коньков.
Костные чешуйки, как и ганоидные, постоянны, не сменяются и лишь ежегодно увеличиваются в соответствии с ростом рыбы, и на них остаются отчетливые годичные и сезонные метки. Зимний слой имеет более частые и тонкие напластования, чем летний, поэтому он темнее летнего. По числу летних и зимних слоев на чешуе можно определить возраст некоторых рыб.
Под чешуей у многих рыб имеются серебристые кристаллики гуанина. Отмытые от чешуи, они являются ценным веществом для получения искусственного жемчуга. Из чешуи рыб изготовляют клей.
По бокам тела многих рыб можно наблюдать ряд выделяющихся чешуек с отверстиями, которые образуют боковую линию - один из важнейших органов чувств. Количество чешуи в боковой линии -
В одноклеточных железах кожи образуются феромоны - летучие (пахучие) вещества, выделяемые в окружающую среду и воздействующие на рецепторы других рыб. Они специфичны для разных видов, даже близкородственных; в некоторых случаях определена их внутривидовая дифференцировка (возрастная, половая).
У многих рыб, в том числе у карповых, образуется так называемое вещество страха (ихтиоптерин), которое выделяется в воду из тела пораненной особи и воспринимается ее сородичами как сигнал, извещающий об опасности.
Кожа рыб быстро регенерирует. Через нее происходит, с одной стороны, частичное выделение конечных продуктов обмена веществ, а с другой - поглощение некоторых веществ из внешней среды (кислород, угольная кислота, вода, сера, фосфор, кальций и другие элементы, играющие большую роль в жизнедеятельности). Большую роль играет кожа и как рецепторная поверхность: в ней располагаются термо-, баро-, хемо- и другие рецепторы.
В толще кориума образуются покровные кости черепа и пояса грудных плавников.
Через мышечные волокна миомеров, соединенные с ее внутренней поверхностью, кожа участвует в работе туловищно-хвостовой мускулатуры.

Мышечная система и электрические органы

Мышечную систему рыб, как и других позвоночных, разделяют на мышечную систему тела (соматическую) и внутренних органов (висцеральную).

В первой выделяют мускулы туловища, головы и плавников. Внутренние органы имеют свою мускулатуру.
Мышечная система взаимосвязана со скелетом (опора при сокращении) и нервной системой (к каждому мышечному волокну подходит нервное волокно, и каждая мышца иннервируется определенным нервом). Нервы, кровеносные и лимфатические сосуды располагаются в соединительнотканной прослойке мышц, которая в отличие от мышц млекопитающих невелика,
У рыб, как и других позвоночных, сильнее всего развита туловищная мускулатура. Она обеспечивает плавание рыбы. У настоящих рыб она представлена двумя большими тяжами, расположенными вдоль тела от головы до хвоста (большая боковая мышца - m. lateralis magnus) (рис. 1). Продольной соединительнотканной прослойкой эта мышца делится на спинную (верхнюю) и брюшную (нижнюю) части.


Рис. 1 Мускулатура костистой рыбы (по Кузнецову, Чернову, 1972):

1 - миомеры, 2 - миосепты

Боковые мышцы разделены миосептами на миомеры, число которых соответствует количеству позвонков. Наиболее отчетливо миомеры видны у личинок рыб, пока их тела прозрачны.
Мышцы правой и левой сторон, поочередно сокращаясь, сгибают хвостовой отдел тела и изменяют положение хвостового плавника, благодаря чему тело двигается вперед.
Над большой боковой мышцей вдоль тела между плечевым поясом и хвостом у осетровых и костистых лежит прямая боковая поверхностная мышца (m. rectus lateralis, m. lateralis superficialis). У лососевых в ней откладывается много жира. По нижней стороне тела тянется прямая брюшная мышца (m. rectus abdominalis); у некоторых рыб, например угрей, ее нет. Между ней и прямой боковой поверхностной мышцей располагаются косые мышцы (m. obliguus).
Группы мышц головы управляют движениями челюстного и жаберного аппаратов (висцеральная мускулатура), Плавники имеют свою мускулатуру.
Наибольшее скопление мускулов определяет и расположение центра тяжести тела: у большинства рыб он находится в спинной части.
Деятельность туловищных мышц регулируется спинным мозгом и мозжечком, а висцеральная мускулатура иннервируется периферической нервной системой, возбуждаемой непроизвольно.

Различают поперечнополосатые (действующие в значительной степени произвольно) и гладкие мышцы (которые действуют независимо от воли животного). К поперечно-полосатым относятся скелетные мышцы тела (туловищные) и мышцы сердца. Туловищные мышцы могут быстро и сильно сокращаться, однако скоро утомляются. Особенностью строения сердечных мышц является не параллельное расположение обособленных волокон, а разветвление их кончиков и переход из одного пучка в другой, что обусловливает непрерывную работу этого органа.
Гладкие мышцы также состоят из волокон, но гораздо более коротких и не обнаруживающих поперечной исчерченности. Это мышцы внутренних органов и стенок кровеносных сосудов, имеющие периферическую (симпатическую) иннервацию.
Поперечнополосатые волокна, а следовательно, и мышцы делят на красные и белые, различающиеся, как следует из названия, цветом. Цвет обусловлен наличием миоглобина - белка, легко связывающего кислород. Миоглобин обеспечивает дыхательное фосфорилирование, сопровождающееся выделением большого количества энергии.
Красные и белые волокна различны по целому ряду морфофизиологических характеристик: цвету, форме, механическим и биохимическим свойствам (интенсивность дыхания, содержание гликогена и т. д.).
Волокна красной мышцы (m. lateralis superficialis) - узкие, тонкие, интенсивно кровоснабжаемые, расположенные более поверхностно (у большинства видов под кожей, вдоль тела от головы до хвоста), содержат в саркоплазме больше миоглобина;
в них обнаружены скопления жира и гликогена. Возбудимость их меньше, отдельные сокращения длятся дольше, но протекают медленней; окислительный, фосфорный и углеводный обмен интенсивнее, чем в белых.
В мышце сердца (красной) мало гликогена и много ферментов аэробного обмена (окислительный обмен). Она характеризуется умеренной скоростью сокращений и утомляется медленнее, чем белые мышцы.
В широких, более толстых, светлых белых волокнах m. lateralis magnus миоглобина мало, меньше в них гликогена и дыхательных ферментов. Углеводный обмен происходит преимущественно анаэробно, и количество выделяемой энергии меньше. Отдельные сокращения быстры. Мышцы быстрее сокращаются и утомляются, чем красные. Лежат они более глубоко.
Красные мышцы постоянно деятельны. Они обеспечивают длительную и непрерывную работу органов, поддерживают постоянное движение грудных плавников, обеспечивают изгибы тела при плавании и поворотах, непрерывную работу сердца.
При быстром движении, бросках активны белые мышцы, при медленном - красные. Поэтому наличие красных или белых волокон (мышц) зависит от подвижности рыб: "спринтеры" обладают почти исключительно белыми мышцами, у рыб, которым свойственны продолжительные миграции, кроме красных Боковых мышц имеются добавочные красные волокна в белых мышцах.
Основную массу мышечной ткани у рыб составляют белые мышцы. Например, у жереха, плотвы, чехони на их долю приходится 96,3; 95,2 и 94,9% соответственно.
Белые и красные мышцы различаются по химическому составу. В красных мышцах содержится больше жира, тогда как в белых мышцах больше влаги и белка.
Толщина (диаметр) мышечного волокна изменяется в зависимости от вида рыб, их возраста, величины, образа жизни, а у прудовых рыб - от условий содержания. Например, у карпа, выращенного на естественной пище, диаметр мышечного волокна составляет (мкм): у мальков - 5 ... 19, сеголетков - 14 ... 41, двухлетков - 25 ... 50.
Туловищная мускулатура образует основную долю мяса рыбы. Выход мяса в процентах общей массы тела (мясистость) неодинаков у разных видов, а у особей одного вида различается в зависимости от пола, условий содержания и др.
Мясо рыб усваивается быстрее, чем мясо теплокровных животных. Оно чаще бесцветно (судак) или имеет оттенки (оранжевый - у лососевых, желтоватый у осетровых и др.) в зависимости от наличия различных жиров и каротиноидов.
Основную массу белков мышц рыб составляют альбумины и глобулины (85%), всего же у разных рыб выделяют 4 ... 7 фракций белков.
Химический состав мяса (вода, жиры, белки, минеральные вещества) различен не только у разных видов, но и в разных частях тела. У рыб одного вида количество и химический состав мяса зависят от условий питания и физиологического состояния рыбы.
В нерестовый период, особенно у проходных рыб, расходуются резервные вещества, наблюдается истощение и, как следствие, уменьшается количество жира и ухудшается качество мяса. У кеты, например, во время подхода к нерестилищам относительная масса костей увеличивается в 1,5 раза, кожи - в 2,5 раза. Мышцы оводняются - содержание сухого вещества снижается более чем в два раза; из мышц практически исчезают жир и азотистые вещества - рыба теряет до 98,4% жира и 57% белка.
Особенности окружающей среды (в первую очередь пищи и воды) могут сильно изменять пищевую ценность рыбы: в заболоченных, тинистых или загрязненных нефтепродуктами водоемах рыбы имеют мясо с неприятным запахом. Качество мяса зависит и от диаметра мышечного волокна, а также количества жира в мышцах. В значительной мере оно определяется соотношением массы мышечной и соединительной тканей, по которому можно судить о содержании в мышцах полноценных мышечных белков (по сравнению с неполноценными белками соединительнотканной прослойки). Это соотношение изменяется в зависимости от физиологического состояния рыбы и факторов внешней среды. В мышечных белках костистых рыб на белки приходится: саркоплазмы 20 ... 30%, миофибрилл - 60 ... 70, стромы - около 2%.
Все многообразие движений тела обеспечивает работа мышечной системы. Она главным образом обеспечивает и выделение тепла и электричества в организме рыбы. Электрический ток образуется при проведении нервного импульса по нерву, при сокращении миофибрилл, раздражении светочувствительных клеток, механохеморецепторов и др.
Электрические органы

ГЛАВА I
СТРОЕНИЕ И НЕКОТОРЫЕ ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ РЫБ

ВЫДЕЛИТЕЛЬНАЯ СИСТЕМА И ОСМОРЕГУЛЯЦИЯ

В отличие от высших позвоночных, имеющих компактную тазовую почку (метанефрос), рыбы обладают более примитивной туловищной почкой (мезонефрос), а их зародыши – предпочкой (пронефрос). У некоторых видов (бычок, атерина, бельдюга, кефаль) предпочка в том или ином виде выполняет выделительную функцию и у взрослых особей; у большинства же взрослых рыб функционирующей почкой становится мезонефрос.

Почки – парные, вытянутые вдоль полости тела темно-красные образования, плотно прилегающие к позвоночнику, над плавательным пузырем (рис. 22). В почке выделяют передний отдел (головная почка), средний и задний.

Артериальная кровь поступает в почки по почечным артериям, венозная по воротным венам почек.

Рис. 22. Почка форели (по Строганову, 1962):
1 - верхняя полая вена, 2 - выносящие почечные вены, 3 - мочеточник, 4 - мочевой пузырь

Морфофизиологическим элементом почки является извитой почечный мочевой каналец, один конец которого расширяется в мальпигиево тельце, а другой отходит к мочеточнику. Железистые клетки стенок секретируют продукты азотистого распада (мочевину) , которые попадают в просвет канальцев. Здесь же, в стенках канальцев, происходит обратное всасывание воды, сахаров, витаминов из фильтрата мальпигиевых телец.

Мальпигиево тельце – клубочек артериальных капилляров, охватываемый расширенными стенками канальца, – образует боуменову капсулу. У примитивных форм (акулы, скаты, осетровые) перед капсулой от канальца отходит мерцательная воронка. Мальпигиев клубочек служит аппаратом фильтрации жидких продуктов обмена. В фильтрат попадают как продукты обмена, так и важные для организма вещества. Стенки почечных канальцев пронизаны капиллярами воротных вен и сосудов из боуменовых капсул.

Очищенная кровь возвращается в сосудистую систему почек (почечную вену), а отфильтрованные из крови продукты обмена и мочевина выводятся через каналец в мочеточник. Мочеточники изливаются в мочевой пузырь (мочевой синус), а затем моча выводится наруж 91; у самцов большинства костистых рыб через мочеполовое отверстие позади ануса, а у самок костистых и самцов лососевых, сельдей, щуки некоторых других – через анальное отверстие. У акул и скатов мочеточник открывается в клоаку.

В процессах выделения и водно-солевого обмена кроме почек принимают участие кожа, жаберный эпителий, пищеварительная система (см. ниже).

Жизненная среда рыб – морские и пресные воды – всегда имеет большее или меньшее количество солей, поэтому осморегуляция является важнейшим условием жизнедеятельности рыб.

Осмотическое давление водных животных создается давлением их полостных жидкостей, давлением крови и соков тела. Определяющая роль в этом процессе принадлежит водно-солевому обмену.

Каждая клетка тела имеет оболочку: она полупроницаема, т. е. по-разному проницаема для воды и солей (пропускает воду и солеизбирательно). Водно-солевой обмен клеток определяется в первую очередь осмотическим давлением крови и клеток.

По уровню осмотического давления внутренней среды по отношению к окружающей воде рыбы образуют несколько групп: у миксин полостные жидкости изотоничны окружающей среде; у акул и скатов концентрация солей в жидкостях тела и осмотическое давление немного выше, чем в морской воде, или почти равно ему (достигается за счет разницы солевого состава крови и морской воды и за счет мочевины); у костистых рыб – и морских и пресноводных (как и у более высоко организованных позвоночных) – осмотическое давление внутри тела не равно осмотическому давлению окружающей воды. У пресноводных рыб оно выше, у морских рыб (как и у других позвоночных) ниже, чем в окружающей среде (табл. 2).

Таблица 2
Величина депрессии крови для крупных групп рыб (по Строганову, 1962)

Группа рыб. Депрессия Д°Кровь. Депрессия Д° Внешняя среда. Среднее осмотическое давление, Па. Кровь Среднее осмотическое давление, Па
Внешняя среда.
Костистые: морские. 0,73. 1,90-2,30. 8,9 105. 25,1 105.
Костистые: пресноводные. 0,52. 0,02-0,03. 6,4 105. 0,3 105.

Если в организме поддерживается определённый уровень осмотического давления жидкостей тела, то условия жизнедеятельности клеток становятся более стабильными и организм меньше зависит от колебаний внешней среды.

Настоящие рыбы обладают этим свойством – сохранять относительное постоянство осмотического давления крови и лимфы, т. е. внутренней среды; поэтому они относятся к гомойосмотическим организмам (от греч. ‛гомойос‛ – однородный) .

Но у разных групп рыб эта независимость осмотического давления выражается и достигается по-разному,

У морских костистых рыб общее количество солей в крови значительно ниже, чем в морской воде, давление внутренней среды меньше давления внешней, т. е. их кровь гипотонична по отношению к морской воде. Ниже приведены величины депрессии крови рыб (по Строганову, 1962):

Вид рыбы. Депрессия среды Д°.
Морские:
треска балтийская -
0,77
камбала морская -
0,70
скумбрия -
0,73
форель радужная -
0,52
налим -
0,48

Пресноводные:
карп - 0,42
линь -
0,49
щука -
0,52

Проходные:
угорь в море -
0,82
в реке -
0,63
севрюга в море -
0,64
в реке -
0,44

У пресноводных рыб количество солей в крови выше, чем в пресной воде. Давление внутренней среды больше давления внешней, их кровь гипертонична.

Поддержание солевого состава крови и давления ее на нужном уровне обусловливается деятельностью почек, особых клеток стенок почечных канальцев (выделение мочевины), жаберных лепестков (диффузия аммиака, выделение хлоридов), кожных покровов, кишечника, печени.

У морских и пресноводных рыб осморегуляция совершается разными способами (специфическая деятельность почек, различная проницаемость покровов для мочевины, солей и воды, различная деятельность жабр в морской и пресной воде).

У пресноводных рыб (с гипертонической кровью), находящихся в гипотонической среде, разница осмотического давления внутри и вне организма приводит к тому, что вода извне непрерывно поступает внутрь организма – через жабры, кожу и ротовую полость (рис. 23).

Рис. 23. Механизмы осморегуляции у костистых рыб
А – пресноводные; Б – морские (по Строганову, 1962)

Во избежание чрезмерного обводнения, для сохранения водно-солевого состава и уровня осмотического давления возникает необходимость вывода из организма лишней воды и одновременного удержания солей. В связи с этим у пресноводных рыб мощное развитие получают почки. Количество мальпигиевых клубочков и почечных канальцев у них велико; мочи они выделяют гораздо больше, чем близкие морские виды. Данные о количестве мочи, выделяемой рыбами в сутки, представлены ниже (по Строганову, 1962):

Вид рыбы. Количество мочи, мл/кг массы тела
Пресноводные:
карп
- 50–120
форель -
60– 106
сом карликовый -
154 – 326

Морские:
бычок - 3–23
морской черт -
18

Проходные:
угорь в пресной воде - 60–150
в море - 2–4

Утрата солей с мочой, экскрементами и через кожу восполняется у пресноводных рыб за счет получения их с пищей благодаря специализированной деятельности жабр (жабры поглощают из пресной воды ионы Na и Сl) и поглощением солей в почечных канальцах.

Морские костистые рыбы (с гипотонической кровью), находящиеся в гипертонической среде, постоянно теряют воду – через кожу, жабры, с мочой, экскрементами. Предотвращение обезвоживания организма и сохранение осмотического давления на нужном уровне (т. е. ниже, чем в морской воде) достигаются тем, что они пьют морскую воду, которая всасывается через стенки желудка и кишечника, а избыток солей выделяется кишечником и жабрами.

Угорь и морской бычок-подкаменщик в морской воде ежедневно пьют 50–200 см3 воды на 1 кг массы тела. В условиях опыта при пре прекращении подачи воды через рот (закрытый пробкой) рыба теряла 12%– 14% массы и на 3–4-й день погибала.

Морские рыбы выделяют очень мало мочи: в почках у них немного мальпигиевых клубочков, у некоторых их нет совсем и есть только почечные канальцы. У них уменьшена проницаемость кожи для солей, жабры выделяют наружу ионы Na и Сl. Железистые клетки стенок канальцев увеличивают выделение мочевины и других прод091;ктов азотисm0;ого обмена.

Таким образом, у непроходных рыб – только морских или только пресноводных – действует какой-нибудь один, специфический для них способ осморегуляции.

Эвригалинные организмы (т. е. выдерживающие значительное колебание солености), в частности проходные рыбы, проводят часть жизни в море, а часть – в пресной воде. При переходе из одной среды в другую, например во время нерестовых миграций, они переносят большие колебания солености.

Это возможно благодаря тому, что проходные рыбы могут переходить с одного способа осморегуляции на другой. В морской воде у них действует такая же система осморегуляции, как у морских рыб, в пресной – как у пресноводных, так что их кровь в морской воде гипотонична, а в пресной – гипертонична.

Их почки, кожа и жабры могут функционировать двояко: почки имеют почечные клубочки с почечными канальцами, как у пресноводных рыб, и только почечные канальцы, как у морских. Жабры снабжены специализированными клетками (так называемые клетки Кейс-Вильмера), способными поглощать и выделять Сl и Na (тогда как у морских или пресноводных рыб они действуют только в одном направлении). Изменяется и количество таких клеток. При переходе из пресной воды в море в жабрах японского угря возрастает количество клеток, выделяющих хлориды. У речной миноги при подъеме из моря в реки количество мочи, выделяемой в течение суток, увеличивается до 45% по сравнению с массой тела.

У некоторых проходных рыб большую роль в регуляции осмотического давления играет слизь, выделяемая кожей.

Передний отдел почки – головная почка – выполняет не выделительную, а кроветворную функцию: в него не заходит воротная вена почек, а в составляющей ее лимфоидной ткани образуются красные и белые кровяные клетки и разрушаются отжившие эритроциты.

Как и селезёнка, почки чутко отражают состояние рыбы, уменьшаясь в объёме при недостатке кислорода в воде и увеличиваясь при замедлении обмена (у карпа – во время зимовки, когда ослабляется деятельность кровеносной системы), в случае острых заболеваний и т. д.

Очень своеобразна дополнительная функция почек у колюшки, строящей для нереста гнездо из кусочков растений: перед нерестом почки увеличиваются, в стенках почечных канальцев вырабатывается большое количество слизи, которая в воде быстро затвердевает и скрепляет гнездо.

ФИЗИОЛОГИЯ И ЭКОЛОГИЯ РЫБ

Органы чувств представлены у рыб на голове глазами и отверстиями обонятельных капсул.

Почти все рыбы различают цвета , а некоторые виды могут рефлекторно изменять собственную окраску : световые раздражители преобразуются органами зрения в нервные импульсы, поступающие к пигментным клеткам кожи.

Рыбы хорошо распознают запахи и наличие вкусовых веществ в воде; у многих видов вкусовые почки расположены не только в ротовой полости и на губах, но и на различных усиках и кожных выростах вокруг рта.

На голове рыб находятся сейсмосенсорные каналы и электрочувствительные органы, позволяющие им ориентироваться в темноте или мутной воде по малейшим изменениям электрического поля. Они составляют систему органов чувств боковой линии . У многих видов боковая линия хорошо видна как одна или несколько цепочек чешуек с мелкими отверстиями.

У рыб нет внешних органов слуха (слуховых отверстий или ушных раковин), но хорошо развитое внутреннее ухо позволяет им слышать звуки.

Дыхание рыб осуществляется через богатые кровеносными сосудами жабры (жаберные лепестки), а у некоторых видов (вьюн) развились приспособления для дополнительного дыхания атмосферным воздухом при дефиците кислорода в воде (при заморах, высокой температуре и т. д.). Вьюны заглатывают воздух, который поступает затем в кровь через кровеносные сосуды и капилляры внутренних органов.

Движения рыб весьма разнообразны. Обычно рыбы передвигаются при помощи волнообразных изгибов тела.

Рыбы со змеевидной формой тела (минога , угорь , вьюн) передвигаются при помощи изгибов всего тела . Скорость их движения невелика (рисунок слева):


(изображены изменения положения тела через определенные интервалы времени)

Температура тела у рыб определяется температурой окружающей их воды.

По отношению к температуре воды рыбы делятся на холоднолюбивых (холодноводных) и теплолюбивых (тепловодных) . Некоторые виды прекрасно себя чувствуют подо льдами Арктики, а некоторые виды могут вмерзать в лед на несколько месяцев. Линь и карась переносят промерзание водоемов до дна. Ряд видов, спокойно переносящих замерзание поверхности водоема, не способны размножаться, если в летний период вода не прогреется до температуры 15-20° С (сом , толстолобик , карп).

Для большинства холодноводных видов (сиг , форель) температура воды больше 20° С неприемлема, так как содержание кислорода в теплой воде для этих рыб недостаточно. Известно, что растворимость газов, в том числе и кислорода, в воде резко уменьшается с повышением температуры. Одни виды легко переносят дефицит кислорода в воде в широком диапазоне температур (карась , линь), тогда как другие живут лишь в холодной и богатой кислородом воде горных речек (хариус , форель).

Окраска рыб может быть самой разнообразной. Почти во всех случаях окраска рыб играет либо маскирующую (от хищников), либо сигнализирующую (у стайных видов) роль. Окраска рыб изменяется в зависимости от сезона, условий обитания и физиологического состояния; наиболее ярко многие виды рыб окрашены в период размножения.

Существует понятие брачная окраска (брачный наряд) рыб. В период размножения у некоторых видов (плотва , лещ) появляются на чешуе и коже головы "жемчужные" бугорки.

Миграции рыб

Миграции большинства рыб связаны со сменой водоемов, различающихся по солености воды.

По отношению к солености воды всех рыб можно разделить на три группы: морские (живут при солености, близкой к океанической), пресноводные (не переносят осолонения) и солоноватоводные , встречающиеся как в приустьевых участках моря, так и в низовьях рек. Последние виды близки к , нагуливающимся в солоноватоводных дельтах, губах и лиманах, а нерестящимся в реках и пойменных озерах.

Истинно пресноводные рыбы - это рыбы, которые обитают и размножаются только в пресной воде (пескарь).

Ряд видов, обычно живущих в морской или пресной воде, могут легко переходить в новых условиях к «нетипичной» для себя воде. Так, некоторые бычки и морские иглы распространились по рекам и водохранилищам наших южных рек.

Отдельную группу образуют проходные рыбы , большую часть жизни проводящие в море (нагуливающиеся и созревающие, т.е растущие в море), а на нерест приходящие в реки или, наоборот, т.е. совершающие нерестовые миграции из рек в моря.

К этим рыбам относятся многие ценнейшие в промысловом отношении осетровые и лососевые рыбы. Некоторые виды рыб (лосось) возвращаются в те водоемы, где они появились на свет (это явление носит название хоминг - инстинкт дома). Эти способности лососей активно используются при интродукции икры в новые для этих рыб реки. Механизмы, позволяющие проходным рыбам находить безошибочно свою родную речку или озеро, неизвестны.

Есть виды, большую часть жизни живущие в реках, а на нерест уходящие в море (т.е. наоборот ). Среди нашей фауны такие путешествия совершает речной угорь , живущий и созревающий в реках и озерах, а для продолжения рода уходящий в Атлантический океан.

У проходных рыб при переходе из одной среды в другую заметно меняются обмен веществ (чаще всего при созревании половых продуктов они прекращают питаться) и внешний вид (форма тела, окраска и т. д.). Часто эти изменения бывают необратимыми - многие виды после нереста погибают .

Горбуша, или розовый лосось (Oncorhynchus gorbuscha) в различных жизненных фазах
(самец и самка в сезон размножения и океаническая фаза)

Промежуточную экологическую группу образуют полупроходные рыбы - рыбы, размножающиеся в пресной воде, а для нагула выходящие в опресненные участки моря - прибрежную зону морей, заливы, эстуарии.

Размножение рыб

Нерест - важнейший этап в жизни рыб.

Многие рыбы не заботятся об икре и выметывают огромное количество икринок (у белуги до нескольких миллионов) в воду, где и происходит их оплодотворение. Огромное число икринок гибнет, и от каждой самки выживает одна, редко две особи. Здесь за сохранение вида отвечает астрономическая численность выметанной икры.

Некоторые виды рыб (бычки , колюшки) мечут до сотни икринок, но охраняют потомство, строят своеобразные гнезда , защищают икру и мальков. Есть даже виды, например тиляпия, которые вынашивают икру и личинок во рту . Число икринок у этих рыб невелико, но выживаемость существенно выше, что и обеспечивает виду сохранение.

Место нереста у большинства икромечущих рыб характерно для вида, в связи с чем существует их деление на экологические группы по характеру икрометания:

  • пелагофилы мечут икру в толще воды, чаще всего на течении, где и происходит ее развитие (во взвешенном состоянии);
  • литофилы откладывают икру на грунт;
  • фитофилы - на водную растительность.
  • есть немногочисленные виды, нашедшие крайне оригинальный субстрат для своей икры: так, горчаки откладывают икру в мантийную полость двустворчатых моллюсков.

Питание рыб

Характер питания рыб может сильно меняться с возрастом . Обычно молодь является планктофагом или бентофагом, а с возрастом переходит к хищничеству. Например, мальки

Понравилась статья? Поделиться с друзьями: