Нагревание воздуха и его температура. Зависимость температуры от географической широты. Суточный и годовой ход температур. Суточный ход упругости водяного пара Что такое ход температуры воздуха

Общие сведения о температуре воздуха

Определение 1

Показатель теплового состояния воздуха, регистрируемый измерительными приборами, называется температурой .

Солнечные лучи, падая на шарообразную форму планеты, нагревают её по-разному, потому что поступают под различными углами. Солнечные лучи атмосферный воздух не нагревают, в то время как земная поверхность нагревается очень сильно и передает тепловую энергию прилегающим слоям воздуха. Теплый воздух становится легким и поднимается вверх, где перемешивается с холодным, отдавая при этом часть своей тепловой энергии. С высотой теплый воздух охлаждается и на высоте $10$ км его температура становится постоянной $-40$ градусов.

Определение 2

В стратосфере происходит перестановка температур, и её показатели начинают расти. Это явление получило название температурной инверсии .

Сильнее всего поверхность земли нагревается там, где солнечные лучи падают под прямым углом – это область экватора . Минимальное количество тепла получают полярные и приполярные районы , потому что угол падения солнечных лучей острый и лучи скользят по поверхности, да к тому же ещё и рассеиваются атмосферой. В результате этого, можно сказать, что температура воздуха уменьшается от экватора к полюсам планеты.

Большую роль играет наклон земной оси к плоскости орбиты и время года, что приводит к неравномерному нагреванию Северного и Южного полушарий. Температура воздуха не является постоянным показателем, в любой точке земного шара она, на протяжении суток, меняется. На тематических климатических картах температура воздуха показана специальным условным знаком, который получил название изотерма .

Определение 3

Изотермы – это линии, соединяющие точки земной поверхности с одинаковыми показателями температуры.

На основании изотерм на планете выделяют тепловые пояса, идущие от экватора к полюсам:

  • Экваториальный или жаркий пояс;
  • Два умеренных пояса;
  • Два холодных пояса.

Таким образом, на температуру воздуха большое влияние оказывают:

  • Географическая широта места;
  • Перенос тепла из низких широт в высокие широты;
  • Распределение материков и океанов;
  • Расположение горных хребтов;
  • Течения в океане.

Изменение температуры

Температура воздуха непрерывно изменяется в течение суток. Суша днем быстро нагревается, а от неё нагревается воздух, но с наступлением ночи суша также быстро охлаждается, а вслед за ней происходит охлаждение воздуха. Поэтому прохладнее всего будет в предрассветные часы, а теплее – после обеда.

Обмен теплом, массой и количеством движения , между отдельными слоями атмосферы происходит постоянно. Взаимодействие атмосферы с поверхностью земли характеризуется этими же процессами и осуществляется следующими путями:

  • Радиационный путь (поглощение воздухом солнечной радиации);
  • Путь теплопроводности;
  • Передача тепла путем испарения, конденсации или кристаллизации водяного пара.

Температура воздуха даже на одной и той же широте не может быть постоянной. На Земле только в одном климатическом поясе суточное колебание температур отсутствует – это жаркий или экваториальный пояс. Здесь одинаковое значение будет как у ночных, так и дневных температур воздуха. На побережьях крупных водоемов и над их поверхностью суточная амплитуда тоже несущественна, зато в зоне пустынного климата разница между дневными и ночными температурами иногда достигает $50-60$ градусов.

В умеренных климатических поясах максимальная солнечная радиация приходится на дни летних солнцестояний – в Северном полушарии это июль месяц, а в Южном полушарииянварь . Причина этого заключается не только в интенсивной солнечной радиации, но и в том, что сильно нагретая поверхность планеты отдает огромное количество тепловой энергии.

Средние широты отличаются более высокими годовыми амплитудами. Любая местность планеты характеризуется своими средними и абсолютными температурами воздуха. Самым жарким местом на Земле является Ливийская пустыня , где зафиксирован абсолютный максимум – ($ +58 $ градусов), а самым холодным местом является российская станция «Восток» в Антарктиде – ($ -89,2$ градуса). Все средние температуры – среднесуточные, среднемесячные, среднегодовые – являются среднеарифметическими величинами нескольких показателей термометра. Мы уже знаем, что с высотой в тропосфере температура воздуха понижается, но в приземном слое её распределение может быть различным – она может увеличиваться, уменьшаться или оставаться постоянной. Представление о том, как распределяется температура воздуха с высотой, дает вертикальный градиент температуры (ВГТ). Время года, время суток, погодные условия оказывают влияние на значение ВГТ. Например, ветер способствует перемешиванию воздуха и на разных высотах его температура выравнивается, а это значит, что ветер ВГТ уменьшает. ВГТ резко снижается, если почва влажная, паровое поле имеет ВГТ больше, чем густо засеянное, потому что данные поверхности имеют разный температурный режим.

Знак ВГТ говорит о том, как с высотой происходит изменение температуры, если он меньше нуля, то с высотой температура увеличивается. И, наоборот, если знак больше нуля – температура с удалением от поверхности будет уменьшаться и останется без изменений при ВГТ = 0. Такое распределение температуры с высотой получило название инверсии .

Инверсии могут быть:

  • Радиационные (радиационное выхолаживание поверхности);
  • Адвективные (образуются при перемещении теплого воздуха на холодную поверхность).

Выделяют четыре типа годового хода температуры исходя из средней многолетней амплитуды и времени наступления экстремальных температур:
  • Экваториальный тип – выделяют два максимума и два минимума;
  • Тропический тип (максимум и минимум наблюдается после солнцестояний);
  • Умеренный тип (максимум и минимум отмечаются после солнцестояний);
  • Полярный тип (минимальная температура во время полярной ночи);

Высота места над уровнем океана тоже оказывает влияние на годовой ход температуры воздуха. Годовая амплитуда с высотой уменьшается. Измерением температуры воздуха занимаются специалисты на метеорологических станциях.

Годовой ход температуры воздуха определяется прежде всего годовым ходом температуры деятельной поверхности. Амплитуда годового хода представляет собой разность среднемесячных температур самого теплого и самого холодного месяцев. На амплитуду годового хода температуры воздуха влияют:

    Широта места. Наименьшая амплитуда наблюдается в экваториальной зоне. С увеличением широты места амплитуда увеличивается, достигая наибольших значений в полярных широтах

    Высота места над уровнем моря. С увеличением высоты над уровнем моря амплитуда уменьшается.

    Погодные условия. Туман, дождь и, главным образом, облачность. Отсутствие облачности зимой приводит к понижению средней температуры самого холодного месяца, а летом – к повышению средней температуры самого теплого месяца.

Заморозки

Заморозками называют понижение температуры до 0 °С и ниже при положительных среднесуточных температурах.

При заморозках температура воздуха на высоте 2 м иногда может оставаться положительной, а в самом нижнем слое воздуха, прилегающем к земле, понижаться до 0 °С и ниже.

По условиям образования заморозки делят на:

    радиационные;

    адвективные;

    адвективно-радиационные.

Радиационные заморозки возникают в результате радиационного охлаждения почвы и прилегающих слоев атмосферы. Возникновению таких заморозков благоприятствуют безоблачная погода и слабый ветер. Облачность уменьшает эффективное излучение и тем самым снижает вероятность заморозка. Ветер также препятствует возникновению заморозка, т.к. он усиливает турбулентное перемешивание и в результате этого увеличивается приток тепла от воздуха к почве. На радиационные заморозки влияют тепловые свойства почвы. Чем меньше ее теплоемкость и коэффициент теплопроводности, тем сильнее заморозки.

Адвективные заморозки . Образуются в результате адвекции воздуха, имеющего температуру ниже 0 °С. При вторжении холодного воздуха почва от соприкосновения с ним охлаждается, и поэтому температура воздуха и почвы мало различаются. Адвективные заморозки охватывают большие площади и мало зависят от местных условий.

Адвективно-радиационные заморозки. Связаны с вторжением холодного сухого воздуха, иногда даже имеющего положительную температуру. Ночью, особенно при ясной или малооблачной погоде, происходит дополнительное охлаждение этого воздуха за счет излучения, и возникают заморозки, как на поверхности, так и в воздухе.

Тепловой баланс деятельной поверхности и атмосферы Тепловой баланс деятельной поверхности

Днем деятельная поверхность поглощает некоторую часть приходящей к ней суммарной радиации и встречного излучения атмосферы, но теряет энергию в виде собственного длинноволнового излучения. Тепло, получаемое деятельной поверхностью, частично передается внутрь почвы или водоема, а частично – в атмосферу. Кроме того, часть полученного тепла расходуется на испарение воды с деятельной поверхности. Ночью суммарная радиация отсутствует и деятельная поверхность обычно теряет тепло в виде эффективного излучения. В это время суток тепло из глубины почвы или водоема поступает вверх к деятельной поверхности, а тепло из атмосферы передается вниз, то есть тоже поступает к деятельной поверхности. В результате конденсации водного пара из воздуха на деятельной поверхности выделяется теплота конденсации.

Общий приход-затрата энергии на деятельной поверхности называется ее тепловым балансом.

Уравнение теплового баланса:

В = Р + L + CW,

где В – радиационный баланс;

Р – поток тепла между деятельной поверхностью и ниже лежащими слоями;

L - турбулентный поток тепла в приземном слое атмосферы;

C·W – тепло, затрачиваемое на испарение воды или выделяется при конденсации водного пара на деятельной поверхности;

C – теплота испарения;

W – количество воды, которая испарилась из единицы поверхности за интервал времени, для которого составлен тепловой баланс.

Рисунок 2.3 – Схема теплового баланса деятельной поверхности

Одной из основных составных теплового баланса деятельной поверхности есть ее радиационный баланс В, который уравновешивается нерадиационными потоками тепла L, P, CW.

В тепловом балансе не учтенные менее важные процессы:

    Перенос тепла вглубь почвы осадками, которые выпадают на нее;

    Затрата тепла при процессах гниения, при радиоактивном распаде веществ в земной коре;

    Поступление тепла из недр Земли;

    Выделение тепла при промышленной деятельности.

Ещё одной особенностью суточного хода температуры можно считать отсутствие сезонной изменчивости у суточного максимума температуры. Весь год он наблюдается в 13-15 часов. И наличие суточного хода у суточного минимума температуры. В холодную часть года он наблюдается в 5-8 часов, в тёплую половину года - в 3-5 часов. Существенной характеристикой суточного хода температуры воздуха является разность температуры самого тёплого и самого холодного часа - амплитуда. Эта разность постепенно увеличивается с 2,6° в декабре до 6,3° в сентябре, когда ночи уже бывают по-осеннему прохладными, а дни по-летнему жаркими.

Диапазон изменения средних суточных температур воздуха на протяжении года составил от -12,9° до +32°. Анализируя (табл. 2.6), видим самый холодный месяц года - январь, самый тёплый - август.

Отрицательная средняя суточная температура воздуха наблюдается в районе Туапсе в январе, феврале, марте, ноябре и декабре. За исследуемый период наблюдалось 413 суток с отрицательной средней суточной температурой, в том числе 159 - в январе, 127 - в феврале, 44 - в марте, 15 - в ноябре и 68 - в декабре. Средняя суточная температура воздуха в пределах 16,1-17° наблюдается в районе Туапсе за исключением января. Средняя суточная температура 15,1°-16° кроме января не наблюдается еще и в июле. И еще интересно, средняя суточная температура в пределах 11,1°-15° наблюдается круглый год за исключением июля и августа.

Средняя суточная температура воздуха выше 25° наблюдается в районе Туaпсе в период с мая по сентябрь. Всего за исследуемый период было отмечено 454 дня со средней суточной температурой выше 25°, в том числе 1 день в мае, 16 дней в июне, 191 день в июле, 231 день в августе и 15 дней в сентябре. Температура воздуха не остаётся неизменной, а из года в год испытывает большие колебания, поэтому даты устойчивого перехода её через различные пределы значительно отклоняются от средней многолетней даты. Так, в отдельные тёплые вёсны может не наблюдаться устойчивого перехода средней суточной температуры воздуха через 20°, а переход через 15 и 20° происходит на месяц раньше. В другие годы наоборот весна бывает холодной и только к концу июня средняя суточная температура достигает 15°.

Таким образом, в районе Туапсе в среднем наблюдается 131 день со средне суточной температурой воздуха ниже 10°, 74 дня со средней суточной температурой 10-15°, 74 дня со средней суточной температурой 15-20° и 66 дней со средней суточной температурой выше 20°.

В период, когда средняя суточная температура воздуха бывает ниже 10° могут наблюдаться дни морозов.

И, хотя устойчивого морозного периода в описываемом районе нет, при вторжении на побережье холодных масс воздуха, температура ежегодно понижается до отрицательных значений.

Таблица 2.6 Суточный ход температуры воздуха

Суточ. амплит.

Обычно морозы начинаются во второй-третьей декаде ноября, а прекращаются в первой - второй декаде марта. Днём с морозом считается такой, в котором хотя бы в один из сроков наблюдений температура по минимальному термометру была 0° и ниже 11, с. 115 - 125.

Характерной особенностью холодного периода является то, что даже в относительно холодные дни, когда средняя суточная температура воздуха бывает отрицательной, часто в дневные часы наблюдаются оттепели и максимальная температура воздуха бывает положительной. Непрерывность морозных периодов постоянно нарушается оттепелями.

Остановимся подробнее также на характере распределения жарких дней в районе Туапсе (табл. 2.7). Дни со средней суточной температурой от 20,1-до 25° можно отнести к умеренно жарким, а со средней суточной температурой выше 25° - к жарким. Заметим, что в дни,- когда средняя суточная температура воздуха бывает 20° и выше, наблюдённая днём достигает 30-35°, а иногда и выше.

Таблица 2. 7 Повторяемость периодов с жаркими днями различной продолжительности

Наблюдаются жаркие дни в период с мая по сентябрь, но преимущественно в июле и августе. Так, за 35 лет в районе Туапсе наблюдалась 2741 день с умеренно жаркой погодой и 454 жарких дня, в том числе 422 жарких дня наблюдались в июле и августе. За весь период наблюдений только три раза средняя суточная температура воздуха была выше 30°.

Дни, в которые температура воздуха бывает выше 19°С, а упругость водяного пара выше 18,8 мб, можно отнести к дням с душной погодой. В (табл. 2.8), случаи с душной погодой выделены. Душная погода в районе Туапсе наблюдается в теплую часть года и ночью и днем, причем ночью на душную погоду приходится 38 % случаев, а днем - 60 % случаев. Наибольшая вероятность душной погоды ночью - про достижении температуры воздуха 21-23° при относительной влажности 81-90 %. Днем погода бывает душной обычно при температуре воздуха 25-27° и влажности воздуха 61-80 %.

Таблица 2.8 Повторяемость (%) различных значений температуры воздуха при определенных величинах относительной влажности в июле (1969-1978 гг.).

Температура воздуха, °С

Следует обратить внимание на то, что в районе Туапсе высокая влажность воздуха может наблюдаться и в холодное время года. И сочетание низкой температуры и высокой влажности воздуха организмом человека воспринимается очень тяжело. При этом очень остро ощущается холод, трудно согреться. Кроме того, холодная погода воспринимается организмом человека по-разному в тихую и ветреную погоду. Сочетание отрицательной температуры воздуха с сильным ветром как бы удваивает ощущение холода. В районе Туапсе такое сочетание бывает в холодный период года при сильных северо-восточных ветрах.

В среднем за период с апреля по ноябрь в районе Туапсе наблюдалось около 91 дня с умеренно жаркой и жаркой погодой, в том числе 56 дней из них приходятся на июль и август.

В повседневной жизни особую важность для человека приобретают ежедневные температуры.

Самая низкая средняя суточная температура воздуха в Туапсе отмечается в период с 14 января по 10 февраля. В наиболее суровом за период исследования январе 1972 года 14 и 15 числа средняя суточная температура воздуха была ниже -11°, а 13 января 1964 года наблюдалась самая низкая средняя суточная температура и составила -12,6°. Такое понижение температуры воздуха с возникновением боры - сильного северо-восточного ветра. Отрицательная средняя суточная температура воздуха может наблюдаться в исследуемом районе в январе, феврале, марте и декабре.

Благодаря активной зимней циклонической деятельности весьма часто на Черное море поступают теплые воздушные массы с юга. Отметим, что средняя суточная температура воздуха, например в январе, может изменяться в пределах от -12,6° до 14,4°, а в феврале - от -10,3° до 15,3°. Т.е. и в зимние месяцы в районе Туапсе могут наблюдаться теплые солнечные дни.

Устойчивое и сначала медленное повышение средней суточной температуры воздуха начинается с конца марта и продолжается до июля. Для весенних месяцев характерна смена относительно жарких дней относительно холодными. Так, с 29 апреля по 1 мая 1986 года средняя суточная температура была на 7-9° выше средней многолетней температуры, а с 5 по 9 мая этого же года она упала на 6-7° ниже средней многолетней. Такие резкие перепады температуры обычно сопровождаются различными стихийными явлениями (ливнями, снегопадами в горах, паводками на реках) и отрицательно отражаются на здоровье людей.

Теплый период года в районе Туапсе начинается с 17 июня и продолжается до 10 сентября. Наиболее высокой средняя многолетняя температура каждого дня бывает с 14 июля по 24 августа и удерживается она в пределах 23,0-24,1°. Этот период года можно считать жарким и в отдельные годы и дни этого периода средняя суточная температура достигает и превышает 25°.

В отдельные годы и этого теплого периода бывает средняя суточная температура воздуха ниже 20°. В последней декаде августа нередко происходит резкое понижение температуры, сопровождаемое интенсивными ливнями. Так было в 1960, 1966, 1978 и 1980 годах, причем в 1980 году минимум температуры составил 10,2°.

Бывают случаи, когда важно знать закономерности распределения не только отдельных метеорологических элементов, но и их комплексов. Важную роль в формировании термического режима играет адвекция теплых или холодных воздушных масс. Характер адвекции зависит от направления воздушных масс. Комплексная обработка температуры воздуха и ветра - термические розы - дает возможность проследить влияние ветра на температуру воздуха.

В зимние месяцы (январь, февраль и декабрь) воздушные массы, пришедшие с северной половины горизонта - холодные, а с южной половины горизонта - теплые. Почти одинаковы розы марта и ноября. В оба месяца холодные массы воздуха приходят с северо-восточной половины горизонта, а теплые - с южной и юго-западной. Только в ноябре понижение и повышение температуры боле выражено, нежели в марте. Интересна роза апреля. Некоторое повышение температуры происходит лишь при восточном и западном переносе. Ветры остальных румбов приносят в район Туапсе холодный воздух. Заметим, что в апреле вода в море еще не прогрелась, поэтому воздушные массы над морем холоднее. Мало отличается от апрельской роза мая. Правда в мае, кроме западных и восточных ветров, теплый воздух приносят северо-западные и северные ветры. Интересна роза июня. В июне ветры северные, северо-восточные и юго-восточные приносят холодные массы воздуха, ветры восточные и южные - нейтральны, а ветры юго-западные, западные и северо-западные приходят с теплыми массами воздуха. Летом, когда ветры бывают слабее, чем в зимние месяцы, их влияние на температурный режим сказывается меньше. Розы июля, августа и сентября мало отличаются друг от друга. В летние месяцы ветры от севера до юго-востока приходят с относительно холодными массами воздуха, а ветры от юга до запада, наоборот, с теплыми массами воздуха. Роза октября мало отличается от роз зимних месяцев, но несколько иначе ориентирована 11, с. 125 - 131.

Большое практическое значение имеет комплексное изучение температуры и влажности воздуха. Комплексная характеристика для июля раздельно по двум периодам суток: с 9 до 18 часов - день и с 21 до 06 часов - ночь. Обработка данных производилась по градациям температуры воздуха через 2°, а относительной влажности воздуха - через 10%. Материала взяты за 10 лет (1969-1978 гг.).

В районе Туапсе могут наблюдаться аномальные в температурном отношении годы, сезоны, месяцы. На годы со всеми четырьмя нормальными сезонами приходится всего около 3 % всех лет исследуемого периода, на годы с одним аномальным сезоном - 21 %, с двумя аномальными сезонами - 35 %, с тремя аномальными сезонами - 28 % и со всеми четырьмя аномальными сезонами - 10 %. Такие полностью аномальные годы это: 1924, 1938, 1948, 1953, 1962, 1963, 1966, 1972, 1981 и 1984.

атмосфера турбулентный циркуляция воздух

Суточный ход температуры воздуха у земной поверхности

1. Температура воздуха изменяется в суточном ходе вслед за температурой земной поверхности. Поскольку воздух нагревается и охлаждается от земной поверхности, амплитуда суточного хода температуры в метеорологической будке меньше, чем на поверхности почвы, в среднем примерно на одну треть. Над поверхностью моря условия сложнее, о чем будет сказано дальше.

Рост температуры воздуха начинается вместе с ростом температуры почвы (минут на 15 позже) утром, после восхода солнца. В 13-14 ч температура почвы, как мы знаем, начинает понижаться. В 14-15 ч начинает падать и температура воздуха. Таким образом, минимум в суточном ходе температуры воздуха у земной поверхности приходится на время вскоре после восхода солнца, а максимум - на 14-15 ч.

Суточный ход температуры воздуха достаточно правильно проявляется лишь в условиях устойчивой ясной погоды. Еще более закономерным представляется он в среднем из большого числа наблюдений: многолетние кривые суточного хода температуры- плавные кривые, похожие на синусоиды.

Но в отдельные дни суточный ход температуры воздуха может быть очень неправильным. Это зависит от изменений облачности, меняющих радиационные условия на земной поверхности, а также от адвекции, т. е. от притока воздушных масс с другой температурой. В результате этих причин минимум температуры может сместиться даже на дневные часы, а максимум - на ночь. Суточный ход температуры может вообще исчезнуть или кривая суточного изменения примет сложную форму. Иначе говоря, регулярный суточный ход перекрывается или маскируется непериодическими изменениями температуры. Например, в Хельсинки в январе с вероятностью 24 % суточный максимум температуры приходится на время между полуночью и часом ночи, и только в 13% он приходится на промежуток времени от 12 до 14 ч.

Даже в тропиках, где непериодические изменения температуры слабее, чем в умеренных широтах, максимум температуры приходится на послеполуденные часы только в 50 % всех случаев.

В климатологии обычно рассматривается суточный ход температуры воздуха, осредненный за многолетний период. В таком осредненном суточном ходе непериодические изменения температуры, приходящиеся более или менее равномерно на все часы суток, взаимно погашаются. Вследствие этого многолетняя кривая суточного хода имеет простой характер, близкий: к синусоидальному.
Для примера приводим на рис. 22 суточный ход температуры воздуха в Москве в январе и июле, вычисленный по многолетним данным. Вычислялась многолетняя средняя температура для каждого часа январских или июльских суток, а затем по полученным средним часовым значениям были построены многолетние кривые суточного хода для января и июля.

Рис. 22. Суточный ход температуры воздуха в январе (1) и июле (2). Москва. Средняя месячная температура 18.5 °С для июля, -10 "С для января.

2. Суточная амплитуда температуры воздуха зависит от многих влияний. Прежде всего она определяется суточной амплитудой температуры на поверхности почвы: чем больше амплитуда на поверхности почвы, тем больше она в воздухе. Но суточная амплитуда температуры на поверхности почвы зависит в основном от облачности. Следовательно, и суточная амплитуда температуры воздуха тесно связана с облачностью: в ясную погоду она значительно больше, чем в пасмурную. Это хорошо видно из рис. 23, на котором представлен суточный ход температуры воздуха в Павловске (под Ленинградом), средний для всех дней летнего сезона и отдельно для ясных и пасмурных дней.

Суточная амплитуда температуры воздуха изменяется еще по сезонам, по широте, а также в зависимости от характера почвы и рельефа местности. Зимой она меньше, чем летом, так же как и амплитуда температуры подстилающей поверхности.

С увеличением широты суточная амплитуда температуры воздуха убывает, так как убывает полуденная высота солнца над горизонтом. Под широтами 20-30° на суше средняя за год суточная амплитуда температуры около 12 °С, под широтой 60° около 6 °С, под широтой 70° только 3 °С. В самых высоких широтах, где солнце не восходит или не заходит много дней подряд, регулярного суточного хода температуры нет вовсе.

Имеет значение и характер почвы и почвенного покрова. Чем больше суточная амплитуда температуры самой поверхности почвы, тем больше и суточная амплитуда температуры воздуха над ней. В степях и пустынях средняя суточная ампли-

Туда достигает 15-20 °С, иногда 30 °С. Над густым растительным покровом -она меньше. На суточной амплитуде сказывается и близость водных бассейнов: в приморских местностях она меньше.

Рис. 23. Суточный ход температуры воздуха в Павловске в зависимости от облачности. 1 - ясные дни, 2 - пасмурные дни, 3 - все дни.

На выпуклых формах рельефа местности (на вершинах и склонах гор и холмов) суточная амплитуда температуры воздуха уменьшена в сравнении с равнинной местностью, а на вогнутых формах рельефа (в долинах, оврагах и лощинах) увеличена (закон Воейкова). Причина заключается в том, что на выпуклых формах рельефа воздух имеет уменьшенную площадь соприкосновения с подстилающей поверхностью и быстро сносится с нее, заменяясь новыми массами воздуха. В вогнутых же формах рельефа воздух сильнее нагревается от поверхности и больше застаивается в дневные часы, а ночью сильнее охлаждается и стекает по склонам вниз. Но в узких ущельях, где и приток радиации, и эффективное излучение уменьшены, суточные амплитуды меньше, чем в широких долинах.

3. Понятно, что малые суточные амплитуды температуры на поверхности моря имеют следствием и малые суточные амплитуды температуры воздуха над морем. Однако эти последние все же выше, чем суточные амплитуды на самой поверхности моря. Суточные амплитуды на поверхности открытого океана измеряются лишь десятыми долями градуса, но в нижнем слое воздуха над океаном они доходят до 1 - 1,5 °С (см. рис. 21), а над внутренними морями и того больше. Амплитуды температуры воздуха повышены потому, что на них сказывается влияние адвекции воздушных масс. Также играет роль и непосредственное поглощение солнечной радиации нижними слоями воздуха днем и излучение ими ночью.

Суточный ход температуры воздуха определяется соответствующим ходом температуры деятельной поверхности. Нагревание и охлаждение воздуха зависят от термического режима деятельной поверхности. Тепло, поглощенное этой поверхностью, частично распространяется в глубь почвы или водоема, а другая его часть отдается прилегающему слою атмосферы и затем распространяется в вышележащие слои. При этом происходит некоторое запаздывание роста и понижения температуры воздуха по сравнению с изменением температуры почвы.

Минимальная температура воздуха на высоте 2 м наблюдается перед восходом солнца. По мере поднятия солнца над горизонтом температура воздуха в течение 2--3 ч быстро повышается. Затем рост температуры замедляется. Максимум ее наступает через 2--3 ч после полудня. Далее температура понижается-- сначала медленно, а затем более быстро.

Над морями и океанами максимум температуры воздуха наступает на 2--3 ч раньше, чем над материками, причем амплитуда суточного хода температуры -воздуха над крупными водоемами больше амплитуды колебания температуры водной поверхности. Это объясняется тем, что поглощение солнечной радиации воздухом и собственное его излучение над морем значительно больше, чем над сушей, так как над морем в воздухе содержится больше водяного пара.

Особенности суточного хода температуры воздуха выявляются при осреднении результатов длительных наблюдений. При таком осреднении исключаются отдельные непериодические нарушения суточного хода температуры, связанные с вторжениями холодных и теплых воздушных масс. Эти вторжения искажают суточный ход температуры. Например, при вторжении днем холодной воздушной массы температура воздуха над некоторыми пунктами иногда понижается, а не повышается. При вторжении же тёплой массы ночью температура может повышаться.

При установившейся погоде изменение температуры воздуха в течение суток выражено довольно отчетливо. Но амплитуда суточного хода температуры воздуха над сушей всегда меньше амплитуды суточного хода температуры поверхности почвы. Амплитуда суточного хода температуры воздуха зависит от ряда факторов.

Широта места. С увеличением широты места амплитуда суточного хода температуры воздуха убывает. Наибольшие амплитуды наблюдаются в субтропических широтах. В среднем за год рассматриваемая амплитуда составляет в тропических областях около 12°С, в умеренных широтах 8--9°С, у Полярного круга 3--4°С, в Заполярье 1--2°С.

Время года. В умеренных широтах наименьшие амплитуды наблюдаются зимой, а наибольшие - летом. Весной они несколько больше, чем осенью. Амплитуда суточного хода температуры зависит не только от дневного максимума, но и от ночного минимума, который тем ниже, чем продолжительнее ночь. В умеренных и высоких широтах за короткие летние ночи температура не успевает упасть до очень низких значений и потому амплитуда здесь остается сравнительно небольшой. В полярных областях в условиях круглосуточного полярного дня амплитуда суточного хода температуры воздуха составляет, всего около 1 °С. В полярную ночь суточные колебания температуры почти не наблюдаются. В Заполярье наибольшие амплитуды отмечаются весной и осенью. На острове Диксон наибольшая амплитуда в эти сезоны составляет в среднем 5--6 °С.

Наибольшие амплитуды суточного хода температуры воздуха наблюдаются в тропических широтах, причем они здесь мало зависят от времени года. Так, в тропических пустынях эти амплитуды в течение всего года составляют 20--22 °С.

Характер деятельной поверхности. Над водной поверхностью амплитуды суточного хода температуры воздуха меньше, чем над сушей. Над морями и океанами они составляют в среднем 2--3°С. С удалением от берегов в глубь материка амплитуды увеличиваются до 20--22 °С. Аналогичное по характеру, но более слабое влияние на суточный ход температуры воздуха оказывают внутренние водоемы и сильно увлажненные поверхности (болота, места с обильной растительностью). В сухих степях и пустынях среднегодовые амплитуды суточного хода температуры воздуха достигают 30 °С.

Облачность. Амплитуда суточного хода температуры воздуха в ясные дни больше, чем в облачные, так как колебания температуры воздуха находятся в прямой зависимости от колебаний температуры деятельного слоя, которые в свою очередь непосредственно связаны с количеством и характером облаков.

Рельеф местности. На суточный ход температуры воздуха значительное влияние оказывает рельеф местности, на что впервые обратил внимание А. И. Воейков. При вогнутых формах рельефа (котловины, ложбины, долины) воздух соприкасается с наибольшей площадью подстилающей поверхности. Здесь воздух днем застаивается, а ночью охлаждается над склонами и стекает на дно. В результате этого увеличивается как дневное нагревание, так и ночное охлаждение воздуха внутри вогнутых форм рельефа по сравнению с равнинной местностью. Тем самым увеличиваются и амплитуды суточных колебаний температуры в таком рельефе. При выпуклых формах рельефа (горы, холмы, возвышенности) воздух соприкасается с наименьшей площадью подстилающей поверхности. Влияние деятельной поверхности на температуру воздуха уменьшается. Таким образом, амплитуды суточного хода температуры воздуха в котловинах, ложбинах, долинах больше, чем над равнинами, а над последними они больше, чем над вершинами гор и холмов.

Высота над уровнем моря. С увеличением высоты места амплитуда суточного хода температуры воздуха уменьшается, а моменты наступления максимумов и минимумов сдвигаются на более позднее время. Суточный ход температуры с амплитудой 1--2°С наблюдается даже на высоте тропопаузы, но здесь он уже обусловлен поглощением солнечной радиации озоном, содержащимся в воздухе.

Годовой ход температуры воздуха определяется, прежде всего, годовым ходом температуры деятельной поверхности. Амплитуда годового хода представляет собой разность среднемесячных температур самого тёплого и самого холодного месяцев.

В северном полушарии на континентах максимальная средняя температура воздуха наблюдается в июле, минимум в январе. На океанах и побережье материков экстремальные температуры наступают несколько позднее: максимум - в августе, минимум - в феврале - марте. На суше амплитуды годового хода температуры воздуха значительно больше, чем над водной поверхностью.

Большое влияние на амплитуду годового хода температуры воздуха оказывает широта места. Наименьшая амплитуда наблюдается в экваториальной зоне. С увеличением широты места амплитуда увеличивается, достигая наибольших значений в полярных широтах. Амплитуда годовых колебаний температуры воздуха зависит также от высоты места над уровнем моря. С увеличением высоты амплитуда уменьшается. Большое влияние оказывают на годовой ход температуры воздуха погодные условия: туман, дождь и главным образом облачность. Отсутствие облачности зимой приводит к понижению средней температуры самого холодного месяца, а летом -- к повышению средней температуры самого теплого месяца.

Годовой ход температуры воздуха в разных географических зонах разнообразен. По величине амплитуды и по времени наступления экстремальных температур выделяют четыре типа годового хода температуры воздуха.

  • 1. Экваториальный тип. В экваториальной зоне в году наблюдаются два максимума температуры -- после весеннего и осеннего равноденствия, когда солнце над экватором в полдень находится в зените, и два минимума -- после зимнего и летнего солнцестояния, когда солнце находится на наименьшей высоте. Амплитуды годового хода здесь малы, что объясняется малым изменением притока тепла в течение года. Над океанами амплитуды составляют около 1 °С, а над континентами 5--10°С.
  • 2. Тип умеренного пояса. В умеренных широтах также отмечается годовой ход температуры с максимумом после летнего и минимумом после зимнего солнцестояния. Над материками северного полушария максимальная среднемесячная температура наблюдается в июле, над морями и побережьями -- в августе. Годовые амплитуды увеличиваются с широтой. Над океанами и побережьями они в среднем составляют 10--15 °С, над материками 40--50 °С, а на широте 60° достигают 60 °С.
  • 3. Полярный тип. Полярные районы характеризуются продолжительной холодной зимой и сравнительно коротким прохладным летом. Годовые амплитуды над океаном и побережьями полярных морей составляют 25--40 °С, а на суше превышают 65 °С. Максимум температуры наблюдается в августе, минимум -- в январе.

Рассмотренные типы годового хода температуры воздуха выявляются из многолетних данных и представляют собой правильные периодические колебания. В отдельные годы под влиянием вторжений теплых или холодных масс возникают отклонения от приведенных типов. Частые вторжения морских воздушных масс на материк приводят к уменьшению амплитуды. Вторжения континентальных воздушных масс на побережья морей и океанов увеличивают амплитуду в этих районах. Непериодические изменения температуры связаны главным образом с адвекцией воздушных масс. Например, в умеренных широтах значительные непериодические похолодания происходят при вторжении холодных воздушных масс из Арктики. При этом весной нередко отмечаются возвраты холода. При вторжении в умеренные широты тропических воздушных масс осенью наблюдаются возвраты тепла 8, с. 285 - 291.

Понравилась статья? Поделиться с друзьями: