Строение синапса и его медиаторы. Виды синапсов. Межнейронные контакты - синапсы: строение, функция и эволюция

3.6. Синапсы

Нейроны в ЦНС объединены между собой в сложнейшие нейронные цепи посредством синапсов. Синапс – область (зона) контакта нейронов или нейрона и рабочего органа. Синапсы классифицируются по нескольким признакам:

по местоположению и принадлежности соответствующим клеткам – центральные (аксосоматические, аксодендритические,

аксоаксональныеи) и периферические (нервно-мышечные, нейросекреторные)

по функциональному значению – возбуждающие и тормозящие;

по способу передачи информации – химические, электрические, смешанные.

3.6.1. Строение синапса. Проведение возбуждения через синапс

Аксон, подходя к другим нейронам или клеткам рабочего органа, теряет миелиновую оболочку, разветвляется, истончается. Каждое разветвление аксона заканчивается утолщением, которое контактирует с телами, дендритами, аксонами соседних нейронов,клетками органов (1 аксон может образовать до 10000 синапсов). В пресинаптическом отделе находится большое количество везикул (пузырьков),
в которых содержатся медиаторы – химические вещества (посредники), оказывающие возбуждающий или тормозящий эффекты в зависимости от своего химического строения. Мембрана, покрывающая пресинаптическое окончание в области контакта несколько утолщена и называется пресинаптической мембраной (рис. 8, 8.1).

Мембрана тела, аксона, дендрита, клеток рабочих органов называется постсинаптической мембраной. Она содержит рецепторы,
обладающие высокой чувствительностью и специфичностью к медиаторам (образно, медиатор – ключ, рецептор – замок). В различных синапсах находятся различные медиаторы – ацетилхолин, норадреналин, дофамин, серотонин и др.) В нервномышечных синапсах постсинаптическая мембрана имеет складчатое строение, что увеличивает ее поверхность.

Между пресинаптической и постсинаптической мембранами находится синаптическая щель (размером от 20 до 50 нанометров), заполненная внеклеточной жидкостью.

Таким образом, синапс включает в себя 3 части:

пресинаптическую мембрану

постсинаптическую мембрану

синаптическую щель

Проведение возбуждения через синапс. Проведение возбуждения через химический синапс – сложный физиологический процесс, протекающий поэтапно с участием медиаторов. Во многих центральных синапсах, нервномышечных и синапсах парасимпатической нервной системы медиатором является ацетилхолин . Потенциал действия по аксону доходит до бляшки и вызывает изменение проницаемости пресинаптической мембраны для ионов кальция, которые из синаптической щели входят внутрь бляшки, что приводит к разрыву пузырьков и выходу из них ацетилхолина в синаптическую щель. Он диффундирует к постсинаптической мембране, взаимодействует с рецепторами мембраны, что повышает ее возбудимость, изменяет проницаемость для ионов натрия, в результате на мембране возникает возбуждение, которое распространяется на другой нейрон или клетки рабочего органа. Медиатор выделяется в синаптическую щель в большем количестве, чем это необходимо для проведения нервных импульсов (проявление принципа биологической надежности). Избыток медиаторов гидролизуется ферментами, находящимися во внеклеточной жидкости синаптической щели.

Тормозные синапсы по строению и проведению возбуждения
не отличаются от возбуждающих
синапсов, отличие состоит лишь
в природе медиаторов и рецепторов постсинаптической мембраны. Медиаторами тормозных синапсов спинного мозга является глицин , головного мозга – гамма-аминомасляная кислота (ГАМК). Тормозной медиатор, взаимодействуя с рецепторами постсинаптической мембраны, вызывает снижение ее возбудимости, что приводит к блокированию нервных импульсов на постсинаптической мембране,
и возбуждение на другие нейроны не распространяется.

Электрические синапсы обнаружены в незначительных количествах в ЦНС и гладких мышцах. В этих синапсах пресинаптическая
и постсинаптическая мембраны близко прилегают друг к другу, синаптическая щель очень узкая (5 нанометров), через нее проходят поперечные (из клетки в клетку) каналы, образованные белковыми молекулами. Через этот щелевой контакт потенциал действия легко переходит с пресинаптического окончания на постсинаптическую мембрану.

Иногда встречаются смешанные синапсы : в одной части – химический, в другой – электрический механизмы передачи нервных импульсов.

Физиологические свойства синапсов

Все синапсы характеризуются рядом общих свойств:

1) одностороннее проведение возбуждения;

2) замедленное (задержка) проведение возбуждения (в электрических синапсах задержка короче);

3) низкая возбудимость и лабильность;

4) способность в суммации возбуждений;

5) склонность к утомлению.

3.6.2. Особенности функционирования синапсов у детей

Синаптическая задержка проведения нервных импульсов у детей более длительна, чем у взрослых (у новорожденных через синапс проходит около 20 импульсов в секунду, у взрослых – 100–150 имп/сек).
У детей в пресинаптическом отделе синапса содержится меньшее количество медиаторов, медленнее происходит их синтез, поэтому быстрее наступает утомление в синапсах и нервных центрах при длительном возбуждении, чем меньше возраст ребенка, тем в большей степени это выражено. В процессе роста у детей происходит образование большого количества новых синапсов, что способствует развитию мозга, процессов научения, памяти.

1. По виду выделяемого медиатора выделяют химические синапсы двух видов:

а) адренергические (медиатором является адреналин).

б) холинергические (медиатором является ацетилхолин).

2. Электрические синапсы. Передают возбуждение без участия медиатора с большой скоростью и обладают двухсторонним проведением возбуждения. Структурной основой электрического синапса является нексус. Встречаются эти синапсы в железах внутренней секреции, эпителиальной ткани, ЦНС, сердце. В некоторых органах возбуждение может передаваться и через химические и через электрические синапсы.

3. По эффекту действия:

а) возбуждающие

б) тормозные

4. По месту расположения:

а) аксоаксональные

б) аксосоматические

в) аксодендрические

г) дендродендрические

д) дендросоматические.

Механизм передачи возбуждения в нервно-мышечном синапсе.

ПД достигая нервного окончания (пресинаптической мембраны) вызывает его деполяризацию. В результате этого внутрь окончания поступают ионы кальция. Увеличение концентрации кальция в нервном окончании способствует освобождению ацетилхолина, который выходит в синаптическую щель. Медиатор достигает постсинаптической мембраны и связывается там с рецепторами. В результате внутрь постсинаптической мембраны поступают ионы натрия и эта мембрана деполяризуется.

Если исходный уровень МПП составлял 85 мВ, то он может снижаться до 10 мВ, т.е. происходит частичная деполяризация, т.е. возбуждение пока еще не распространяется дальше, а находится в синапсе. В результате этих механизмов развивается синаптическая задержка, которая составляет от 0,2 до 1 мВ. частичная деполяризация постсинаптической мембраны называется возбуждающим постсинаптическим потенциалом (ВПСП).

Под влиянием ВПСП в соседнем чувствительном участке мембраны мышечного волокна возникает распространяющийся ПД, который и вызывает сокращение мышцы.

Ацетилхолин из пресинаптического окончания выделяется постоянно, но его концентрация невысока, что необходимо для поддержания тонуса мышцы в покое.

Для заблокирования передачи возбуждения через синапс применяют яд кураре, который связывается с рецепторами постсинаптической мембраны и препятствует их взаимодействию с ацетилхолином. Заблокировать проведение возбуждения через синапс может яд бутулин и другие вещества.

На наружной поверхности постсинаптической мембраны содержится фермент ацетилхолинэстераза, который расщепляет ацетилхолин и инактивирует его.

Принципы и особенности передачи возбуждения

в межнейральных синапсах.

Основной принцип передачи возбуждения в межнейральных синапсах такой же как и в нейромышечном синапсе. Однако существуют свои особенности:

1. Многие синапсы являются тормозными.

2. ВПСП при деполяризации одного синапса недостаточно для вызова распространяющегося потенциала действия, т.е. необходимо поступление импульсов к нервной клетке от многих синапсов.

Нервно-мышечный синапс

Классификация синапсов

1. По местоположению и принадлежности соответствующим структурам:

    периферические (нервно-мышечные, нейросекреторные, рецепторнонейрональные);

    центральные (аксо-соматические, аксо-дендритные, аксо-аксональные, сомато-дендритные. сомато-соматические);

2. По эффекту действия:

    возбуждающие

    тормозные

3. По способу передачи сигналов:

    Электрические,

    химические,

    смешанные.

4. По медиатору:

    холинергические,

    адренергические,

    серотонинергические,

    глицинергически. и т.д.

Тормозные медиаторы:

– гамма-аминомасляная кислота (ГАМК)

– таурин

– глицин

Возбуждающие медиаторы:

– аспартат

– глутамат

Оба эффекта:

– норадреналин

– дофамин

– серотонин

Механизм передачи возбуждения в синапсе

(на примере нервно-мышечного синапса)

    Выброс медиатора в синаптическую щель

    Диффузия АХ

    Возникновение возбуждения в мышечном волокне.

    Удаление АХ из синаптической щели

Синапс - это определенная зона контакта отростков нервных клеток и остальных невозбудимых и возбудимых клеток, которые обеспечивают передачу информационного сигнала. Синапс морфологически образуется контактирующими мембранами 2-х клеток. Мембрана, относящаяся к отростку зовется пресинаптической мембраной клетки, в которую поступает сигнал, второе ее название - постсинаптическая. Вместе с принадлежностью постсинаптической мембраны синапс может быть межнейрональным, нейромышечным и нейросекреторным. Слово синапс было введено в 1897 г. Чарльзом Шеррингтоном (англ. физиологом).

Что же такое синапс?

Синапс - это специальная структура, которая обеспечивает передачу от нервного волокна нервного импульса на другое нервное волокно или нервную клетку, а чтобы произошло воздействие на нервное волокно от рецепторной клетки (области соприкосновения друг с другом нервных клеток и другого нервного волокна), требуется две нервные клетки.

Синапс - это небольшой отдел в окончании нейрона. При его помощи идет передача информации от первого нейрона ко второму. Синапс находится в трех участках нервных клеток. Также синапсы находятся в том месте, где нервная клетка вступает в соединение с разными железами или мышцами организма.

Из чего состоит синапс

Строение синапса имеет простую схему. Он образуется из 3-х частей, в каждой из которых осуществляются определенные функции во время передачи информации. Тем самым такое строение синапса можно назвать подходящим для передачи Непосредственно на процесс воздействуют две главные клетки: воспринимающая и передающая. В конце аксона передающей клетки находится пресинаптическое окончание (начальная часть синапса). Оно может повлиять в клетке на запуск нейротрансмиттеров (это слово имеет несколько значений: медиаторы, посредники или нейромедиаторы) - определенные с помощью которых между 2-мя нейронами реализуется передача электрического сигнала.

Синаптической щелью является средняя часть синапса - это промежуток между 2-мя вступающими во взаимодействие нервными клетками. Через эту щель и поступает от передающей клетки электрический импульс. Конечной частью синапса считается воспринимающая часть клетки, которая и является постсинаптическим окончанием (контактирующий фрагмент клетки с разными чувствительными рецепторами в своей структуре).

Медиаторы синапса

Медиатор (от латинского Media - передатчик, посредник или середина). Такие медиаторы синапса очень важны в процессе передачи

Морфологическое различие тормозного и возбуждающего синапса заключается в том, что они не имеют механизм освобождения медиатора. Медиатор в тормозном синапсе, мотонейроне и другом тормозном синапсе считается аминокислотой глицином. Но тормозной или возбуждающий характер синапса определяется не их медиаторами, а свойством постсинаптической мембраны. К примеру, ацетилхолин дает возбуждающее действие в нервно-мышечном синапсе терминалей (блуждающих нервов в миокарде).

Ацетилхолин служит возбуждающим медиатором в холинэргических синапсах (пресинаптическую мембрану в нем играет окончание спинного мозга мотонейрона), в синапсе на клетках Рэншоу, в пресинаптическом терминале потовых желез, мозгового вещества надпочеников, в синапсе кишечника и в ганглиях симпатической нервной системы. Ацетилхоли-нестеразу и ацетилхолин нашли также во фракции разных отделов мозга, иногда в большом количестве, но кроме холинэргического синапса на клетках Рэншоу пока не смогли идентифицировать остальные холинэргические синапсы. По словам ученых, медиаторная возбуждающая функция ацетилхолина в ЦНС весьма вероятна.

Кателхомины (дофамин, норадреналин и адреналин) считаются адренэргическими медиаторами. Адреналин и норадреналин синтезируются в окончании симпатического нерва, в клетке головного вещества надпочечника, спинного и головного мозга. Аминокислоты (тирозин и L-фенилаланин) считаются исходным веществом, а адреналин заключительным продуктом синтеза. Промежуточное вещество, в которое входят норадреналин и дофамин, тоже выполняют функцию медиаторов в синапсе, созданных в окончаниях симпатических нервов. Эта функция может быть либо тормозной (секреторные железы кишечника, несколько сфинктеров и гладкая мышца бронхов и кишечника), либо возбуждающей (гладкие мышцы определенных сфинктеров и кровеносных сосудов, в синапсе миокарда - норадреналин, в подкровных ядрах головного мозга - дофамин).

Когда завершают свою функцию медиаторы синапса, катехоламин поглощается пресинаптическим нервным окончанием, при этом включается трансмембранный транспорт. Во время поглощения медиаторов синапсы находятся под защитой от преждевременного истощения запаса на протяжении долгой и ритмичной работы.

Синапс: основные виды и функции

Лэнгли в 1892 году было предположено, что синаптическая передача у вегетативной ганглии млекопитающих не электрической природы, а химической. Через 10 лет Элиоттом было выяснено, что из надпочечников адреналин получается от того же воздействия, что и стимуляция симпатических нервов.

После этого предположили, что адреналин способен секретироваться нейронами и при возбуждении выделяться нервным окончанием. Но в 1921 году Леви сделал опыт, в котором установил химическую природу передачи в вегетативном синапсе среди сердца и блуждающих нервов. Он заполнил сосуды физиологическим раствором и стимулировал блуждающий нерв, создавая замедление сердцебиения. Когда жидкость перенесли из заторможенной стимуляции сердца в нестимулированое сердце, оно билось медленнее. Ясно, что стимуляция блуждающего нерва вызвала освобождение в раствор тормозящего вещества. Ацетилхолин целиком воспроизводил эффект этого вещества. В 1930 г. роль в синаптической передаче ацетилхолина в ганглии окончательно установил Фельдберг и его сотрудник.

Синапс химический

Химический синапс принципиально отличается передачей раздражения при помощи медиатора с пресинапса на постсинапс. Поэтому и образуются различия в морфологии химического синапса. Химический синапс более распространен в позвоночной ЦНС. Теперь известно, что нейрон способен выделять и синтезировать пару медиаторов (сосуществующих медиаторов). Нейроны тоже имеют нейромедиаторную пластичность - способность изменять главный медиатор во время развития.

Нервно-мышечный синапс

Данный синапс осуществляет передачу возбуждения, однако эту связь могут разрушить различные факторы. Передача заканчивается во время блокады выбрасывания в синаптическую щель ацетилхолина, также и во время избытка его содержания в зоне постсинаптических мембран. Множество ядов и лекарственных препаратов влияют на захват, выход, который связан с холинорецепторами постсинаптической мембраны, тогда мышечный синапс блокирует передачу возбуждения. Организм гибнет во время удушья и остановки сокращения дыхательных мышц.

Ботулинус - микробный токсин в синапсе, он блокирует передачу возбуждения, разрушая в пресинаптическом терминале белок синтаксин, управляемый выходом в синаптическую щель ацетилхолина. Несколько отравляющих боевых веществ, фармокологических препаратов (неостигмин и прозерин), а также инсектициды блокируют проведение возбуждения в нервно-мышечный синапс при помощи инактивации ацетилхолинэстеразы - фермента, который разрушает ацетилхолин. Поэтому идет накопление в зоне постсинаптической мембраны ацетилхолина, снижается чувствительность к медиатору, производится выход из постсинаптических мембран и погружение в цитозоль рецепторного блока. Ацетилхолин будет неэффективен, и синапс будет заблокирован.

Синапс нервный: особенности и компоненты

Синапс - это соединение места контакта среди двух клеток. Причем каждая из них заключена в свою электрогенную мембрану. Нервный синапс состоит из трех главных компонентов: постсинаптическая мембрана, синаптическая щель и пресинаптическая мембрана. Постсинаптическая мембрана - это нервное окончание, которое проходит к мышце и опускается внутрь мышечной ткани. В пресинаптической области имеются везикулы - это замкнутые полости, имеющие медиатор. Они всегда находятся в движении.

Подходя к мембране нервных окончаний, везикулы сливаются с ней, и медиатор попадает в синаптическую щель. В одной везикуле содержится квант медиатора и митохондрии (они нужны для синтеза медиатора - главного источника энергии), далее синтезируется из холина ацетилхолин и под воздействием фермента ацетилхолинтрансферразы перерабатывается в ацетилСоА).

Синаптическая щель среди пост- и пресинаптических мембран

В разных синапсах величина щели различна. наполнено межклеточной жидкостью, в которой имеется медиатор. Постсинаптическая мембрана накрывает место контакта нервного окончания с иннервируемой клеткой в мионевральном синапсе. В определенных синапсах постсинаптическая мембрана создает складку, возрастает контактная площадь.

Дополнительные вещества, входящие в состав постсинаптической мембраны

В зоне постсинаптической мембраны присутствуют следующие вещества:

Рецептор (холинорецептор в мионевральном синапсе).

Липопротеин (обладает большой схожестью с ацетилхолином). У этого белка присутствует электрофильный конец и ионная головка. Головка поступает в синаптическую щель, происходит взаимодействие с катионовой головкой ацетилхолина. Из-за этого взаимодействия идет изменение постсинаптической мембраны, затем происходит деполяризация, и раскрываются потенциально зависимые Na-каналы. Деполяризация мембраны не считается самоподкрепляющим процессом;

Градуален, его потенциал на постсинаптической мембране зависит от числа медиаторов, то есть потенциал характеризуется свойством местных возбуждений.

Холинэстераза - считается белком, у которого имеется ферментная функция. По строению она схожа с холинорецептором и обладает похожими свойствами с ацетилхолином. Холинэстеразой разрушается ацетилхолин, вначале тот, который связан с холинорецептором. Под действием холинэстеразы холинорецептор убирает ацетилхолин, образуется реполяризация постсинаптической мембраны. Ацетилхолином расщепляется до уксусной кислоты и холина, необходимого для трофики мышечной ткани.

При помощи действующего транспорта выводится на пресинаптическую мембрану холин, он используется для синтеза нового медиатора. Под воздействием медиатора меняется проницаемость в постсинаптической мембране, а под холинэстеразой чувствительность и проницаемость возвращается к начальной величине. Хеморецепторы способны вступать во взаимодействие с новыми медиаторами.

Синапс (греч. synapsis соприкосновение, соединение) - специализированная зона контакта между отростками нервных клеток и другими возбудимыми и невозбудимыми клетками, обеспечивающая передачу информационного сигнала. Морфологически синапс образован контактирующими мембранами двух клеток. Мембрана, принадлежащая отросткам нервных клеток, называется пресинаптической, мембрана клетки, к которой передается сигнал, - постсинаптической. В соответствии с принадлежностью постсинаптической мембраны синапса подразделяют на нейросекреторные, нейромышечные и межнейрональные. Термин «синапс» был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.

Синапс - особая структура, обеспечивающая передачу нервного импульса с нервного волокна на какую-либо другую нервную клетку или нервное волокно, также с рецепторной клетки на нервное волокно (область соприкосновения нервных клеток друг с другом и другой нервной клеткой). Для образования синапса необходимы 2 клетки.

Структура синапса

Типичный синапс - аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической, образованной булавовидным расширением окончанием аксона передающей клетки и постсинаптической, представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае - участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания.

Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую. Между обеими частями имеется синаптическая щель, края которой укреплены межклеточными контактами. Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели называется пресинаптической мембраной . Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной , в химических синапсах она рельефна и содержит многочисленные рецепторы. В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки, содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент, разрушающий этот медиатор. На постсинаптической и пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

Классификации синапсов

В зависимости от механизма передачи нервного импульса различают

  • химические ;
  • электрические - клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе - 3,5 нм (обычное межклеточное - 20 нм); Так как сопротивление внеклеточной жидкости мало (в данном случае), импульсы проходят не задерживаясь через синапс. Электрические синапсы обычно бывают возбуждающими.
  • смешанные синапсы : Пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом. Наиболее распространён первый тип.

Химические синапсы можно классифицировать по их местоположению и принадлежности соответствующим структурам:

  • периферические
    • нервно-мышечные
    • нейросекреторные (аксо-вазальные)
    • рецепторно-нейрональные
  • центральные
    • аксо-дендритические - с дендритами, в т. ч.
    • аксо-шипиковые - с дендритными шипиками, выростами на дендритах;
    • аксо-соматические - с телами нейронов;
    • аксо-аксональные - между аксонами;
    • дендро-дендритические - между дендритами;

В зависимости от медиатора синапсы разделяются на

  • аминергические, содержащие биогенные амины (например, серотонин, дофамин;) o в том числе адренергические, содержащие адреналин или норадреналин;
  • холинергические, содержащие ацетилхолин;
  • пуринергические, содержащие пурины;
  • пептидергические, содержащие пептиды. При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.

По знаку действия:

  • возбуждающие
  • тормозные.

Если первые способствуют возникновению возбуждения в постсинаптической клетке (в них в результате поступления импульса происходит деполяризация мембраны, которая может вызвать потенциал действия при определённых условиях.), то вторые, напротив, прекращают или предотвращают его появление, препятствуют дальнейшему распространению импульса. Обычно тормозными являются глицинергические (медиатор - глицин) и ГАМК-ергические синапсы (медиатор - гамма-аминомасляная кислота).

Таким образом, тормозные синапсы бывают двух видов:

  1. синапс, в пресинаптических окончаниях которого выделяется медиатор, гиперполяризующий постсинаптическую мембрану и вызывающий возникновение тормозного постсинаптического потенциала;
  2. аксо-аксональный синапс, обеспечивающий пресинаптическое торможение.

Синапс холинергический (s. cholinergica) - синапс, медиатором в котором является ацетилхолин. В некоторых синапсах присутствует постсинаптическое уплотнение - электронно-плотная зона, состоящая из белков. По её наличию или отсутствию выделяют синапсы асимметричные и симметричные. Известно, что все глутаматергические синапсы асимметричны, а ГАМК-ергические - симметричны. В случаях, когда с постсинаптической мембраной контактирует несколько синаптических расширений, образуются множественные синапсы. К специальным формам синапсов относятся шипиковые аппараты, в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. «Не-шипиковые» синапсы называются «сидячими». Например, сидячими являются все ГАМК-ергические синапсы.

Механизм функционирования химического синапса При деполяризации пресинаптической терминали открываются потенциал-чувствительные кальциевые каналы, ионы кальция входят в пресинаптическую терминаль и запускают механизм слияния синаптических пузырьков с мембраной, вследствие чего медиатор выходит в синаптическую щель и соединяется с белками-рецепторами постсинаптической мембраны, которые делятся на метаботропные и ионотропные. Первые связаны с G-белком и запускают каскад реакций внутриклеточной передачи сигнала, вторые связаны с ионными каналами, которые открываются при связывании с ними нейромедиатора, что приводит к изменению мембранного потенциала.

Медиатор действует в течение очень короткого времени, после чего разрушается специфическим ферментом. Например, в холинэргических синапсах фермент, разрушающий медиатор в синаптической щели - ацетилхолинэстераза. Одновременно часть медиатора может перемещаться через постсинаптическую мембрану (прямой захват) и в обратном направлении через пресинаптическую мембрану (обратный захват). В ряде случаев медиатор также поглощается соседними клетками нейроглии. Открыты два механизма высвобождения: с полным слиянием везикулы с плазмалеммой и так называемый «поцеловал и убежал» (англ. kiss-and-run), когда везикула соединяется с мембраной, и из неё в синаптическую щель выходят небольшие молекулы, а крупные остаются в везикуле. Второй механизм, предположительно, быстрее первого, с помощью него происходит синаптическая передача при высоком содержании ионов кальция в синаптической бляшке. Следствием такой структуры синапса является односторонее проведение нервного импульса.

Существует так называемая синаптическая задержка - время, нужное для передачи нервного импульса. Её длительность - 0,5 мс. Так называемый «принцип Дейла» (один нейрон - один медиатор) признан ошибочным. Или, как иногда считают, он уточнён: из одного окончания клетки может выделяться не один, а несколько медиаторов, причём их набор постоянен для данной клетки.

Строение и виды синапсов

Концевые образования отростков нейрона (нервные окончания) подразделяются на рецепторные, эффекторные и межнейрональные . Рецепторные окончания – концевые образования дендритов в органах. Эффекторные окончания – концевые образования аксонов в рабочих органах. Межнейрональные окончания – концевые образования аксонов на поверхности тела нейрона или отростков другой нервной клетки.

Эфферентные и межнейрональные окончания обеспечивают переход возбуждения с нервного волокна на мышечную, железистую или нервную клетку. Структурные образования, обеспечивающие этот переход, называют синапсами .

Синапс – это соединение, через которое каждая отдельная функциональная единица нервной системы активизирует или тормозит следующую за ней функциональную единицу, направляя сигналы, поступающие в ЦНС, по тому или иному пути, например, в направлении от сенсорных единиц к двигательным.

Синапсы бывают периферическими и центральными. Примером периферического синапса является нервно-мышечный синапс, когда нейрон образует контакт с мышечным волокном. Синапсы в нервной системе называются центральными, когда контактируют два нейрона.

Выделяется пять типов синапсов, в зависимости от того, какими частями контактируют нейроны: 1) аксо-дендритный (аксон одной клетки контактирует с дендритом другой); 2) аксо-соматический (аксон одной клетки контактирует с сомой другой клетки); 3) аксо-аксональный (аксон одной клетки контактирует с аксоном другой клетки); 4) дендро-дендритный (дендрит одной клетки контактирует с дендритом другой клетки); 5) сомо-соматический (контактируют сомы двух клеток). Основная масса контактов – аксо-дендритных и аксо-соматических.

Синапс состоит из трех частей: пресинаптического окончания, синаптической щели и постсинаптической мембраны . Пресинаптическое окончание (синаптическая бляшка) представляет собой расширенную часть терминали аксона. Синаптическая щель – это пространство между двумя контактирующими нейронами. Диаметр синаптической щели составляет 10-20 нм. Мембрана пресинаптического окончания, обращенная к синаптической щели, называется пресинаптической мембраной. Третья часть синапса – постсинаптическая мембрана, которая расположена напротив пресинаптической мембраны.

От величины синаптической щели зависит тип передачи информации через синапс. Если расстояние между мембранами нейронов не превышает 2-4 нм или они контактируют между собой, то такой синапс является электрическим , поскольку подобное соединение обеспечивает низкоомную электрическую связь между этими клетками, позволяющую электрическому потенциалу непосредственно или электротонически передаваться от клетки к клетке. Доля электрических синапсов в ЦНС очень мала. Химические синапсы – это самый сложный вид соединений в центральной нервной системе. Морфологически он отличается от других форм соединений наличием хорошо выраженной синаптической щели и тем, что при нем мембраны строго ориентированы или поляризованы в направлении от нейрона к нейрону. В таких синапсах взаимодействие между нейронами осуществляется с помощью медиатора – биологически активного вещества, выделяющегося из пресинаптического окончания. В пресинаптическом окончании химического синапса находятся пузырьки – везикулы, которые имеют самые разные размеры (от 20 до 150 им и больше) и заполнены различными химическими веществами, способствующими передаче активности с одной клетки на другую.

Понравилась статья? Поделиться с друзьями: