38 технология переработки гречихи в муку. Переработка гречихи в муку и хлопья. Альтернативный вариант использования гречневой лузги. Просеивающая и камнеуборочная машина

По запросу клиента проработан вопрос поставки линии переработки гречки .

В данном случае под переработкой гречки подразумевается подготовка гречневой крупы для розничной продажи.

В качестве примера опишем базовую простую линию, которая состоит из 2 основных частей:

  1. Линия очистки и сортировки гречки по размеру
  2. Линия шелушения гречки (лущильная машина)

Общая схема линии подготовки гречневой крупы (нажмите для увеличения):

1. Линия очистки и сортировки

Линия очистки и сортировки служит для удаления различных примесей и грязи, а также сортировки гречки на 7 сортов (размеров).

Состоит из входного накопителя, очистителя, ковшового элеватора, оборудования для сортировки по размеру и панели управления.

Процесс очистки и сортировки: загрузка > очистка > подъем > сортировка по размеру > зерна 7 размеров

  1. Лущильная линия

Лущильная линия служит для шелушения гречки любого размера путем изменения зазора между рабочими элементами, удаления шелухи, отделения неочищенных зерен от очищенных. Неочищенные зерна автоматически возвращаются для повторной очистки.

Оборудование для лущения гречки состоит из входного накопителя, ковшового элеватора, основной части (4 лущильных машины, циклона, накопителя шелухи, сепаратора шелухи-зерен-ядра, сепаратора зерен-ядра) и панели управления.

Процесс лущения (шелушения) гречки:

Эти 2 модуля позволяют решать основные задачи по подготовке гречневой крупы без необходимости закупки дополнительного оборудования.

Оборудование отличается низким энергопотреблением, компактностью, низким процентом поврежденных зерен, простотой использования и обслуживания. Это самый оптимальный минимальный набор оборудования для переработки гречки.

Большая часть шелухи сохраняет объем и может быть использована для набивки подушек.

Линия также может быть дополнительно укомплектована фотосепаратором (машиной для сортировки гречки по цвету), машиной для удаления пыли из мешков, другим дополнительным оборудованием, а также линией переработки гречневой шелухи.

Общий вид линии переработки гречневой шелухи:

Обработанная гречневая шелуха широко используется для набивки подушек и также может стать дополнительным источником прибыли.

Видео — переработка гречневой шелухи:

Еще фото линий переработки гречки (нажмите для увеличения):


Существует также более простое и дешевое оборудование для подготовки гречневой крупы , ниже некоторые примеры:

Просеивающая и камнеуборочная машина

Служит для очистки гречки от песка, камней, комков земли и прочих загрязнений, которые тяжелее гречки. Эффективна для удаления грязи, совпадающей по размерам с зернами. Машина основана на принципе гравитации.

Машина для промывки гречки

Служит для промывки гречки водой и сушки.

Лущильная машина

Простое оборудование для шелушения гречки — очистки гречневой крупы (ядра) от шелухи.

Сепаратор

Сортирует гречку по размеру.

Подберем для Вас любое оборудование для переработки гречки , в том числе линии по производству гречневой муки, гречневого чая и прочих продуктов переработки гречихи.

Из гречихи вырабатывают два вида продуктов - ядрицу и продел. Ядрица представляет собой крупу из целого ядра, не проходящего через сито с размерами отверстий 1,6x20 мм, продел - крупа из дробленого ядра: проход сита 1,6х20 мм и сход сита № 08.
Продукты из гречихи отличаются высокой питательной и биологической ценностью. По содержанию белка они занимают одно из первых мест среди крупяных продуктов, а по степени сбалансированности незаменимых аминокислот - первое место. Достаточно высоко в гречневой крупе содержание жира (до 2,6%), причем липиды гречихи богаты многими биологически активными веществами, в частности токоферолами. По содержанию токоферолов липиды гречихи занимают ведущее место среди крупяных культур. Именно высоким содержанием токоферолов, отдельные формы которых являются антиоксидантами, объясняется хорошая стойкость гречневой крупы при хранении. В гречневой крупе содержится много витаминов В1 В2 и РР, а также ряд важных минеральных компонентов - железа, кальция, фосфора.
От остальных крупяных культур зерно гречихи отличается своеобразной трехгранной формой. Зерно покрыто грубыми плодовыми оболочками (16...25% от массы зерна), по строению напоминающими цветковые пленки. Ядро имеет тонкие семенные оболочки и алейроновый слой составляющие соответственно 1,5...2,0 и 4,0...5,0% от массы зерна. Зародыш гречихи крупный (10...15%), располагается внутри эндосперма, имеет S-образную форму (реже другую). Эндосперм мучнистый и очень хрупкий. Гречневая крупа - практически единственная, которая не подвергается шлифованию, что объясняется ее формой, структурой эндосперма и расположением зародыша.
Гречиха имеет характерные засорители - семена дикой редьки, вики круглой. Особую трудность для выделения представляют пшеница и татарская гречиха. К сорной примеси относится также весь проход сита с отверстиями Ø 3 мм.
Особыми технологическими признаками зерна является его крупность и выравненность. Эти признаки очень важны для гречихи в связи с необходимостью ее разделения на большое число фракций - шесть. Крупные фракции гречихи содержат меньше плодовых оболочек, лучше шелушатся. При шелушении такого зерна образуется значительно меньше дробленого ядра, чем при шелушении зерна мелких фракций (табл. ХХVII-5).
Снижение выхода целой крупы объясняется тем, что в зерне мелких фракций различие в размерах шелушеных и нешелушеных зерен менее значительно, чем в крупных, т. е. пленки более плотно облегают ядро. Как правило, в зерне гречихи, поступающем на крупяные заводы, содержание зерна мелких фракций невелико, зато много различных примесей, в том числе трудноотделимых, особенно татарской гречихи, дикой редьки и полевого горошка.

Изобретение касается переработки зерна крупяных культур в крупу и может быть использовано при производстве гречневой крупы. Переработку зерна ведут без деления на фракции и после гидротермической обработки при отволаживании зерно подсушивают до влажности 15,5-18%. Шелушение ведут центробежным шелушителем при скорости соударения зерна о неподвижную преграду 55-58 м/с. После выделения из промпродукта крупы производят ее досушивание до влажности хранения 13%. Изобретение позволяет улучшить технологический процесс и снизить расход энергии на термообработку. 1 ил.

Изобретение касается переработки зерна крупяных культур в крупу и может быть использовано при производстве гречневой крупы. Известен способ выработки крупы (см. а.с. СССР N 652964, B 02 B 1/00), включающий очистку зерна от примесей, предварительное и окончательное сортирование по фракциям, пофракционное шелушение, ситовое сепарирование и отделение крупы от нешелушенного зерна, направление последнего на повторное шелушение, аспирационное сепарирование крупы и выбой зерна. Причем аспирационным сепарированием крупу подвергают расслоению на легкую и тяжелую фракции, из последней отсортировывают ядро, направленное на выбой, а остальную часть тяжелой и легкой фракции разделяют по упругим и фракционным свойствам для выделения остальной части ядра. Недостатком известного технического решения является сложность технологического процесса переработки. Известен способ переработки зерна гречихи в крупу (см. а.с. СССР N 852343, B 02 B 1/00), включающий очистку его от примесей, гидротермическую обработку, сушку и охлаждение зерна. Причем перед гидротермической обработкой зерно подвергают нагреву путем пропускания воздушной струи при температуре 73-85 o C, в течение 12 - 18 мин через слой зерна, а гидротермическую обработку зерна ведут насыщенным паром при давлении 0,2-0,3 мПа в течение 2,8 - 4 мин. Недостатком известного технического решения является сложность технологического процесса переработки. Наиболее близким по технической сущности является способ выработки гречневой крупы (см. а.с. СССР N 543405, B 02 B 1/00, включающий очистку и шелушение несортированного по размерам на фракции зерна, отделение на ячеистых сортировочных столиках после предварительного удаления оболочки, мучки и дробленки, а для улучшения качества и сортности крупы производят последовательное многократное шелушение несортированного по размерам зерна, причем в зоне следующего после шелушения падают верхние сходы, полученные после сортировки зерна, а извлечение крупы осуществляют последовательно в несколько этапов путем сортировки обогащенной смеси, полученной из нижних сходов после крупоотделения, при этом верхний сход, полученный после сортировки, направляют на контроль, а нижний сход последнего этапа на крупоотделение в первую зону сортирования. Недостатком известного технического решения является сложность технологического процесса и большой расход энергии на переработку. Задачей изобретения является упрощение технологического процесса и снижение энергетических затрат на переработку. Поставленная техническая задача решается следующим образом. Способ переработки зерна гречихи в крупу, включающий очистку его от примесей, гидротермическую обработку, отволаживание и сушку зерна, шелушение, отделение крупы, а для решения поставленной технической задачи переработку зерна ведут без деления на фракции и после гидротермической обработки при отволаживании зерно просушивают до 15,5-18%, а шелушение ведут центробежным шелушением при скорости соударения о неподвижную преграду 55-58 м/с. Данное техническое решение обеспечивает шелушение зерна без использования наждачных кругов, применение которых загрязняет продукт наждачной пылью. Кроме того, при обработке гречихи наблюдается повышенный расход наждачных кругов, что увеличивает затраты на изготовление гречневой крупы. Использование центробежного шелушения позволяет вести обработку зерна без деления на фракции по крупности, что значительно упрощает процесс переработки зерна и уменьшает количество оборудования в технологической линии. Для того чтобы обеспечить процесс центробежного шелушения необходима определенная скорость соударения зерна о неподвижную преграду. Проведенными исследованиями установлено: для рациональной влажности зерна 15,5-18% скорость соударения должна быть в интервале 55-58 м/с, при этом достигается рациональная степень шелушения, минимальное травмирование зерен гречихи. При выделении из промпродукта крупы производят ее досушивание до влажности хранения 13%. Данное техническое решение обеспечивает при минимальных затратах досушивание крупы до влажности, обеспечивающей сохранность продукта и вкусовые качества. При этом все выходы процесса шелушения не подвергаются процессу досушивания, что снижает расход электроэнергии на производство гречневой крупы. Пример выполнения способа переработки зерна гречихи в крупу показан на принципиальной схеме (см. чертеж). Технологическая линия включает в себя приемный бункер 1 для приема сырья, первый транспорт 2 для подачи сырья в бункер 3 над семяочистительной машиной 4 с триером 5. Очищенное зерно вторым транспортером 6 подается в бункер 7 отделения гидротермической обработки, где установлены агрегаты 8 и 9 для пропаривания гречихи. После пропаривания зерно подвергают отволаживанию и сушке в отволаживателе 10. Отволоженное зерно третьим транспортером 11 подается в центробежный шелушитель 12. Промпродукт после шелушения подают в семяочистительную машину 13, где отделяют шелуху от ядра зерна. Ядра зерна - крупу четвертым транспортером 14 подают в бункер крупы 15, затем на вертикальные сушилки 16 и 17, и готовая крупа фасуется установкой фасования крупы 18. Отходы семяочистительной машины 13 по материалопроводу 19 направляются в циклон разгрузитель 20, где отделяется шелуха, которая выдается через бункер 21. В батарейном циклоне 22 отделяется мучка, которая выдается через бункер 24. Для пылеотделения технологическая линия снабжена вентилятором 25, который имеет трубопровод 26 с оборудованием пылеотделения. Пример осуществления способа переработки зерна гречихи в крупу. Сырое зерно гречихи поступает в приемный бункер 1 и первым транспортером 2 загружается в бункер 3. Семяочистительной машиной 4 с триером 5 производится очистка зерна от пыли, земли, семян сорняков и камня известными технологическими операциями. Очищенное зерно вторым транспортером 6 подается в бункер 7 в отделение гидротермической обработки, где установлены два агрегата 8 и 9 пропариваниия гречихи. Пропаривание гречихи ведут водяным паром известными технологическими приемами. А для экономии пара используют два агрегата 8 и 9 и пропаривание ведут в две стадии. Например, пар из агрегата 8 после обработки определенным временем (по технологии гидротермообработки) перепускают в агрегат 9, используя оставшееся тепло на первичный разогрев зерна в агрегате 9. Затем зерно в агрегате 9 подвергают окончательной обработке свежим паром (также по разработанной технологии термообработки). После обработки зерна в агрегате 9 отработанный первичный пар подают в агрегат 8, к этому времени заполненный новой порцией зерна. Обработанное в две стадии зерно из агрегата 9 выдают в отволаживатель 10. Агрегат 9 загружают новой порцией зерна, и двойной цикл гидротермообработки повторяется. Выше указанные процессы известны и ведутся известными техническими приемами. Дальнейшая переработка зерна гречихи ведется по технологии, предложенной техническим решением задачи. При отволаживании зерна ведут его сушку до влажности 15,5-18%. Пределы влажности определены экспериментальным путем. Установлено, что при влажности зерна более 18% большой выход непрошелушенного зерна, в то же время при влажности зерна менее 15,5% наблюдается повышенный выход дробленого зерна-сечки. Подсушенное зерно направляется в центробежный шелушитель, где зерно вращающимися дисками разгоняют до скорости 55-58 м/с и направляют в неподвижную стальную преграду. При соударении оболочки зерна, имеющие вышеуказанную влажность, разрушаются и при дальнейшем перемещении по каналам отделяются. Использование центробежного шелушителя позволяет обеспечивать шелушение зерна без деления на фракции, что упрощает процесс переработки зерна. Полученный после шелушения промпродукт подают в семяочистительную машину 13, где отделяют шелуху от ядра зерна-крупу. Крупу четвертым транспортером 14 подают в бункер крупы 15, а затем на вертикальные сушилки 16 и 17. Подсушенную крупу до кондиционного содержания 13% (необходимого для хранения) фасуют фасовочной установкой крупы 18. Отходы семяочистительной машины 13 по материалопроводу 19 направляют в циклон разгрузитель 20, где отделяют шелуху, которая выдается через бункер 21. В батарейном циклоне 22 отделяется мучка, которая выдается через бункер 24, причем полученные отходы после семяочистительной машины не подвергаются сушке, что уменьшает расходы энергии на производство крупы.

Формула изобретения

Способ переработки зерна гречихи в крупу, включающий очистку его от примесей, гидротермическую обработку, отволаживание и сушку зерна, шелушение, отделение крупы, отличающийся тем, что переработку зерна ведут без деления на фракции и после гидротермической обработки при отволаживании зерно подсушивают до влажности 15,5 - 18%, а шелушение ведут центробежным шелушителем при скорости соударения зерна о неподвижную преграду 55 - 58 м/с и после выделения из промпродукта крупы производят ее досушивание до влажности хранения 13%.

Характеристика продукции, сырья и полуфабрикатов. Крупа в пищевом рационе человека составляет от 8 до 13 % общего потребления зерновых. На крупяных заводах перерабатывают различные виды крупяных культур. Рис, просо, гречиху называют обычно собственно крупяными культурами, так как основную массу зерна этих культур используют для производства крупы. Кроме того, крупу и крупяные продукты изготавливают из семян овса, ячменя, пшеницы, кукурузы, зрелого гороха и др. Ассортимент крупяной продукции достаточно широк – это крупа из целого и дробленого ядра, хлопья и др.

В России наиболее широкой популярностью пользуется гречневая крупа – ядрица и продел. Ядрица представляет собой целое или слегка надколотое ядро, не проходящее через сито с отверстиями размером 1,6×20 мм. Продел – колотое (дробленое) ядро, проходящее через сито 1,6×20 мм и не проходящие через сито № 08. Кроме обычных ядрицы и продела чаще вырабатывают ядрицу и продел быстроразваривающиеся из зерна, подвергнутого гидротермической обработке. Ядрица выпускается трех сортов: первого, второго и третьего; продел на сорта не делится.

В среднем гречневая крупа содержит 12,6 % белков, 2,6 % жиров, 68 % углеводов. По содержанию и соотношению аминокислот белки гречневой крупы полноценнее белков ряда других злаков. Липотропные свойства гречневой крупы и муки давно используются в диетотерапии заболеваний печени, сердечно-сосудистой системы и как общеукрепляющие средство. В современных условиях важным преимуществом гречишного поля считается то, что практически его не надо обрабатывать ядохимикатами, в отличие от других зерновых культур. Поэтому есть основания относить гречневую крупу к экологически чистым продуктам.

Зерно гречихи покрыто сравнительно толстыми плодовыми оболочками. Своеобразная трехгранная форма зерна и соответственно ядра, а также оригинальное расположение крупного (массовая доля до 15 %) зародыша внутри ядра вызывает повышенную хрупкость последнего.

Особенность производства и потребления готовой продукции. Для крупяного производства очень важным свойством зерна является прочность связи наружных пленок (оболочек) и ядра. У зерна четырех крупяных культур: риса, проса, овса и гречихи наружные пленки охватывают ядро, но не срослись с ним. У четырех других культур: ячменя, гороха, пшеницы и кукурузы пленки прочно срослись с ядром по всей его поверхности. Прочность связи оболочек с ядром определяет в значительной мере способы переработки зерна в различные крупяные продукты. Прочность и хрупкость ядра определяют не только методы переработки, но и ассортимент круп (недробленая, дробленая, шлифованная и др.).

Процесс очистки зерна от примесей на крупяных заводах практически основан на тех же принципах, что и в мукомольном производстве. Однако рабочие органы зерноочистительных машин имеют различные установочные и кинематические параметры, наиболее подходящие для того или иного зерна.

В частности, для выделения примесей из гречихи широко применяют сита с треугольными отверстиями. Имеющая трехгранную форму, гречиха проходит через отверстия сит, а равновеликие примеси, имеющие другую форму, например шаровидную или цилиндрическую, через отверстия этих сит не проходят. Обычно гречиху в процессе очистки предварительно калибруют по размеру на две – три фракции на ситах с круглыми отверстиями, а затем каждая фракция отдельно подается на сита с треугольными отверстиями.

Гидротермическую обработку зерна крупяных культур проводят для улучшения технологических свойств зерна: повышение хрупкости оболочек и снижение хрупкости ядра. Кроме того, в результате гидротермической обработки зерна улучшаются потребительские свойства крупы, сокращается продолжительность ее варки, консистенция каши становится более рассыпчатой; повышается стойкость крупы при хранении из-за инактивации ферментов, которые способствуют порче крупы.

При переработке гречихи гидротермическая обработка состоит из следующих основных операций: пропаривание, сушка и охлаждение. Особенность пропаривания гречихи состоит в высокой температуре (свыше 100 °С) нагрева зерна острым паром при избыточном давлении. В результате нагревания и увлажнения ядро зерна пластифицируется, становится менее хрупким, меньше дробится при шелушении. Пластификация ядра связана также с некоторыми химическими преобразованиями. При пропаривании происходит клейстеризации части крахмала, образование небольшого количества декстринов, обладающих клеящими свойствами.

Сушка зерна после пропаривания приводит к обезвоживанию в основном наружной оболочки, которая, теряя влагу, становится более хрупкой и легче раскалывается при шелушении. Кроме того, возникающие в процессе пропаривания и сушки деформационные изменения в составных частях зерна приводят к отслаиванию оболочек.

Охлаждение после сушки дополнительно снижает влажность зерна, холодные оболочки более хрупки. В то же время необходимо исключить излишнюю сушку зерна, которая может привести к обезвоживанию ядра и повышению его хрупкости.

Калибрование зерна предназначено для разделения зерна по размерам на фракции. Из калиброванного зерна можно более тщательно выделить примеси. Для близких по размерам зерен можно более точно подобрать рабочий зазор в шелушильных машинах, что повысит эффективность шелушения. При производстве гречневой крупы калибрование зерна перед шелушением необходимо для крупоотделения, т. е. разделения нешелушенных и шелушенных зерен.

Особенностью технологической схемы переработки гречихи является раздельное шелушение и сортирование продуктов шелушения каждой фракции.

Шелушение зерна – процесс отделения наружных оболочек (пленок) с поверхности ядра. Выбор способов шелушения зависит от строения зерна, прочности связи оболочек и ядра, прочности ядра, а также ассортимент вырабатываемой продукции. Основным продуктом при переработке гречихи является крупа из целого ядра, поэтому при шелушении стремятся избежать чрезмерного его дробления. Наиболее успешно это достигается, если основным способом воздействия рабочих органов шелушильной машины на зерно является сочетание сжатия и сдвига.

В такой машине зерно сжимается между двумя поверхностями, расстояние между которыми несколько меньше размера целого зерна, но больше размера ядра. При работе машины происходит сжатие и раскалывание оболочек, а вследствие относительного движения поверхностей их сдвиг и отделение от ядра. Естественно, такое воздействие на зерно целесообразно в тех случаях, когда оболочки зерна не срослись с ядром.

Сортирование продуктов шелушения заключается в разделении смеси различных частиц, полученных при шелушении зерна. С некоторой долей условности эту смесь можно разделить на пять фракций: основная фракция – шелушенное зерно (ядро); вторая фракция – нешелушеное зерно; третья фракция – лузга, т. е. отделившиеся в процессе шелушения оболочки и пленки; четвертая фракция – дробленое ядро определенных размеров; пятая фракция – мучка, т.е. смесь мелких частиц ядер и оболочек.

Крупоотделением называется разделение шелушенных и нешелушенных зерен. Данный процесс может применяться при переработке только тех культур, у зерна которых наружные оболочки (пленки), удаляемые при шелушении, не срослись с ядром, а именно: риса, овса, гречихи и проса. В этом случае в продуктах шелушения будут присутствовать только полностью шелушенные и нешелушенные зерна, что позволяет теоретически и практически произвести их разделения.

Чем больше различия зерен и ядер, тем эффективнее по этому признаку можно их разделить. У большинства культур такое различие невелико, лишь у гречихи оно довольно существенно, причем в наибольшей степени в диаметре описанной окружности. Величина этого различия, как правило, не менее 0,5 мм.

Если бы все зерна имели одинаковые размеры, то смесь шелушенных и нешелушенных зерен могла быть разделена достаточно просто. Но в реальном зерне размеры отдельных зерен колеблются от 3 до 5 мм. Чтобы крупоотделение стало возможным, необходимо резко снизить разницу в размерах самих нешелушенных зерен, выполнив операцию калибрования.

Нормы выхода готовой продукции при переработке пропаренной гречихи составляют: крупа ядрица 62 %, крупа продел 5 %.

Стадии технологического процесса. Производство гречневой крупы состоит из следующих стадий и основных операций:

– очистка зерна от примесей;

– гидротермическая обработка зерна (пропаривание, сушка и охлаждение);

– калибрование и шелушение зерна;

– сортирование продуктов шелушения, крупоотделение и контроль крупы;

– упаковывание крупы в потребительскую и торговую тару.

Характеристика комплексов оборудования. Линия начинается с комплекса оборудования для очистки зерна от примесей, в состав которого входят весы, воздушно-ситовые сепараторы, камнеотделители и магнитные сепараторы, рассевы, аспиратор и триер – овсюгоотборник. Второй комплекс оборудования предназначен для гидротермической обработки зерна и включает пропариватель, сушку и охладитель зерна.

Ведущий комплекс оборудования для получения крупы содержит группу рассевов для калибрования зерна, вальцедековые шелушильные станки, рассевы для разделения продуктов шелушения и аспираторы. В состав завершающего комплекса оборудования входят рассевы, аспираторы, падди – машины для контроля ядрицы и продела, фасовочные машины для упаковывания этих продуктов в пакеты, а пакеты – в короба.

На рис. 2.2 показана машинно-аппаратурная схема линии производства гречневой крупы.

Устройство и принцип действия линии. Исходное сырье из производственных бункеров 1 взвешивают на автоматических весах 2 и подают в воздушно-ситовые сепараторы 3 для отделения крупных, мелких и легких примесей, а также в камнеотделитель 4 для отбора минеральных примесей.

Для очистки зерна гречихи от трудноотделимых примесей, представляющих собой семена сорных растений, используется система крупяных рассевов 5 . Преимущественно применяется схема ситового сепарирования с использованием сит с круглыми, продолговатыми и треугольными отверстиями в сочетании с фракционированием, чтобы достаточно полно выделять основную массу примесей. Принципиальная направленность схемы заключается во фракционировании зерна на ситах с круглыми отверстиями с последующим просеиванием фракций на ситах с продолговатыми и треугольными отверстиями, размеры которых подбирают исходя из крупности зерна. Так, для мелкой фракции, полученной проходом сит с круглыми отверстиями Æ 4…4,2 мм, применяют сита с продолговатыми отверстиями размером 2,2…2,4´20 мм и сита с треугольными отверстиями размером 5…6 мм. Для крупной фракции, полученной сходом с указанного сита, применяют сита с отверстиями размером соответственно 2,4…2,6´20 мм и 7…8 мм. На ситах с продолговатыми отверстиями высеиваются такие примеси, как мелкие зерна пшеницы, ячменя, овса, на ситах с треугольными отверстиями – дикая редька, вика и т.п.

Рис. 2.2. Машинно-аппаратурная схема линии производства гречневой крупы

Легкие примеси отделяют в аспираторе 6 , а оставшиеся длинные примеси – в триерах – овсюгоотборниках 7 с размерами ячеек 6…7 мм и накапливают очищенное зерно в бункерах 8 , расположенных над пропаривателем.

Пропариватель периодического действия 9 предназначен для обработки зерна при высоком давлении пара. Пропариватель представляет собой сосуд вместимостью 1 м 3 , в который подачу зерна и пара повторяют в строгой последовательности по заранее заданному циклу. Гречиху пропаривают при давлении пара 0,25…0,30 МПа в течение 5 минут. После пропаривания влажность зерна составляет 18…19 %.

Для сушки пропаренного зерна используют вертикальную паровую сушилку контактного типа 10 , в которой нагревание зерна происходит посредством его контакта с паровыми трубами. Сушка проводится до влажности зерна 12,5…13,5 %, после чего его охлаждают в охладительной колонке 11 при температуре не выше 6…8 ºС.

Перед шелушением гречиха делится на 3…6 фракций крупности. Последняя цифра относится к крупным промышленным предприятиям, первая – к агрегатам и предприятиям малой мощности. Чаще всего для калибрования зерна применяют крупяные рассевы 12 , причем технологическая схема калибрования зерна предусматривает многократный пропуск (особенно крупных) фракций через рассевы. На эту операцию выделяется половина всей просеивающей поверхности крупозавода, что свидетельствует о ее важном значении.

Разделение на фракции должно происходить с высокой точностью, заключающейся в том, чтобы при высеивании зерна какой-либо фракции в ней оставалось как можно меньше более мелких (не свыше 2,5 %) зерен. При делении зерна на 6 фракций обычно используют следующий набор сит с круглыми отверстиями Ø 4,5…4,2…4,0…3,8…3,6…3,3 мм. Сходом с 1-го сита получают 1-ю фракцию зерна, проходом первого и второго сита – 2-ю фракцию и т.д. Разница в размерах нешелушенных зерен во фракциях не превышает 0,2…0,3 мм.

Наряду с указанными выше ситами в рассевах устанавливают сита с треугольными отверстиями, размер которых подбирают в зависимости от крупности фракций. Сходом с этих сит дополнительно отделяют трудноотделимые примеси.

От эффективности системы калибрования зависит содержание нешелушенных зерен, а также некоторых примесей в готовой крупе.

Шелушение зерна гречихи производится в вальцедековых станках 13 , вальцы и деки которых покрыты абразивным материалом. В связи с высокой хрупкостью ядра зерно шелушат очень осторожно при сравнительно низкой эффективности шелушения.

Гидротермическая обработка позволяет более интенсивно шелушить зерно, при этом в продуктах шелушения содержание дробленого ядра с 2,5…3,5 % снижается до 1,5…2,5 %.

Невысокая эффективность шелушения зерна обеспечивает сравнительно малую дробимость ядра. В то же время при такой эффективности шелушения существенно возрастает оборот продукта в системе шелушения. Это не столь существенно для мелких фракций, так как количество зерна в них, как правило, не превышает нескольких процентов.

Сортирование продуктов шелушения производят в крупяных рассевах, в которых разделяют нешелушенные зерна, ядрицу, продел с мучкой. Нешелушенные зерна, полученные сходом с сит, размер отверстий которых на 0,2…0,3 мм меньше размеров отверстий сит, сходом с которых получена данная фракция, после отделения из них лузги в аспираторах возвращают на повторное шелушение в тех же вальцедековых станках. Направлять нешелушенные зерна в вальцедековые станки других фракций нельзя.

Сходом с сит с отверстиями размером 1,7 (1,6)×20 мм получают ядрицу с небольшим количеством лузги. Эти продукты с систем переработки всех фракций объединяются и направляются на контроль ядрицы. Проходы этих сит представляют собой смесь продела, мучки и лузги, которая со всех систем объединяется, и направляются на контроль продела.

Контроль крупы осуществляют в рассевах 16 , где на ситах с круглыми и треугольными отверстиями выделяют дополнительно примеси, а на ситах с отверстиями размером 1,6×2,0 мм - продел и мучку, направляемые на контроль продела. Ядрицу получают сходом с сита с отверстиями 1,6×20 мм. После провеивания крупы в аспираторах 17 с целью дополнительного выделения примесей ядрицу пропускают через падди-машину 18 , а затем через магнитный сепаратор 19 .

Готовую крупу ядрицу после взвешивания на весах 20 загружают в силосы 21 . Из них обеспечивают отпуск крупы в фасовочные машины 22 для упаковки в пакеты. Пакеты с крупой укладывают в ящики на машине 23 и передают на склад.

Для контроля и упаковывания продела применяется преимущественно аналогичное оборудование (на схеме не показано). При контроле продела сходом с сита с отверстиями размером 1,6×20 мм выделяют ядрицу, направляемую на контроль ядрицы, проходом сита № 08 – мучку, сходом – продел. Продел просеивают для отделения лузги, но, так как крупные части лузги и мелкие частицы продела имеют близкие аэродинамические свойства, для более эффективного выделение пленок продел предварительно делят на две фракции обычно на ситах № 1,4 и каждую фракцию провеивают раздельно, после чего их объединяют в один продукт. В проделе могут быть шелушенные семена дикой редьки, имеющие шаровидную форму. Их выделяют на ситах.

Выделенная при провеивании нешелушенных зерен, а также полученная с контроля ядрицы и продела лузга в свою очередь контролируется в просеивающих и провеивающих машинах.

На правах рукописи

КОМПЛЕКСНАЯ ТЕХНОЛОГИЯ ПЕРЕРАБОТКИ ГРЕЧИХИ

С УТИЛИЗАЦИЕЙ ЛУЗГИ

Специальность 05.18.01 – «Технология обработки, хранения и

переработки злаковых, бобовых культур, крупяных продуктов,

Диссертации на соискание ученой степени

кандидата технических наук

Москва – 2008

Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Московский государственный университет пищевых производств».

Научный руководитель:

Официальные оппоненты: доктор технических наук, профессор

кандидат технических наук, профессор

Ведущая организация: Государственное научное учреждение «Всероссийский научно-исследовательский институт зерна и продуктов его переработки»

Учёный секретарь Совета к. т.н.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Производство крупяных культур (просо, гречиха, рис) составляет в целом около 1,6 млн. т, а площадь - около 2,9 млн. га (4,8 % общих посевов зерновых культур). Наибольшую долю среди них по площади занимает гречиха.

Крупяные продукты занимают достойное место в рационе питания человека благодаря разнообразному ассортименту, доступности разным слоям потребителей, высокому качеству и пищевой ценности, безопасности, созданию на их базе продуктов с заданным составом и свойствами.

Среди крупяных культур гречиха занимает особое место. Благодаря высокой пищевой и биологической ценности, продукты, вырабатываемые из гречихи, широко используются не только в общественном, но и в детском и диетическом питании.

Наиболее широкое применение гречиха находит в виде крупы. В значительно меньшей степени используются продукты быстрого приготовления из гречихи – хлопья, а также мука. В нормативно-технических источниках отсутствуют указания по выработке таких продуктов, а в литературных источниках имеются противоречивые и недостаточно обоснованные рекомендации по производству и использованию гречневых хлопьев и муки.

Основными направлениями развития техники и технологии крупяного производства являются: рациональное использование потенциальных возможностей крупяного зерна; расширение ассортимента крупяных изделий, улучшение их качества и пищевой ценности; улучшение качества крупы традиционного ассортимента, повышение ее выхода; изучение свойств вторичных сырьевых ресурсов крупяного производства и способов их рационального применения и т. д.

Цель и задачи исследования

Целью настоящей работы является разработка комплексной технологии переработки гречихи с утилизацией лузги.

Для достижения поставленной цели необходимо решить следующие задачи:

Обосновать и разработать способы выработки гречневых хлопьев, с возможностью их реализации на существующих гречезаводах;

Оценить влияние технологических этапов и режимов рекомендуемых способов на качество гречневых хлопьев;

Определить характер предлагаемых технологических решений на возможные биохимические изменения гречихи при ее подготовке к плющению, установить рациональные режимы технологического процесса;

Разработать способ производства муки из нешелушеных семян гречихи;

Изучить влияние способов гидротермической обработки гречихи на процесс выработки и качество муки гречневой;

Научная новизна

Обоснована и разработана комплексная технология переработки гречихи, защищенная рядом патентов и предусматривающая выработку традиционных продуктов - крупы, а также продуктов быстрого приготовления, муки и утилизацию лузги.

Выявлены основные закономерности, определены параметры гидротермической обработки гречихи в зависимости от направлений ее дальнейшего использования.

Научно обоснованы и разработаны технологические схемы и параметры выработки продуктов быстрого приготовления, как из семян гречихи, так и из крупы, в том числе с применением интенсивных методов энергоподвода (ИК-обработка, пропаривание), обеспечивающие повышение выхода, прочности, снижение длительности приготовления гречневых хлопьев.

С учетом анализа строения ядра и изменения структурно-механических свойств при гидротермической обработке гречихи, обоснована и разработана новая технология производства гречневой муки, позволяющая вырабатывать муку из целых семян гречихи без предварительного фракционирования и шелушения. На основании изучения влияния увлажнения и пропаривания гречихи перед помолом на общий выход и качество муки, обоснованы рекомендации по выбору основных режимов гидротермической обработки.

На основании теории послойного движения сыпучих материалов при сепарировании на ситах, разработан технологический прием стабилизации толщины слоя гречихи на сите при фракционировании за счет циркулирующего потока с целью повышения эффективности процесса калибрования.

В целях утилизации гречневой лузги, с учетом требований к размерным характеристикам органического наполнителя и его физико-химических свойств разработана технологическая последовательность подготовки плодовой оболочки гречихи к вводу в композиционные упаковочные материалы.

Практическая значимость

На основании проведенных исследований разработаны технологические схемы, рекомендованы параметры операций, позволяющие получать гречневые хлопья, как из целых семян гречихи, так и из крупы ядрицы.

Разработанная технология защищена Патентом РФ № 000 «Способ получения зерновых хлопьев».

Сформулированы основные рекомендации по ведению технологического процесса выработки гречневой муки. Показана возможность применения муки гречневой, полученной по разработанной технологии, в рецептуре хлеба из пшеничной муки высшего сорта.

Разработан способ фракционирования гречихи, повышающий эффективность высеивания мелких фракций гречихи, что позволяет повысить качество крупы в результате существенного снижения содержания в ней нешелушеных семян гречихи. Данный способ защищен Патентом РФ № 000 «Способ получения гречневой крупы».

Показана возможность применения лузги гречневой в качестве наполнителя в композиционных упаковочных материалах. Разработаны исходные требования к отходам АПК как сырью для производства композиционных упаковочных материалов.

Апробация работы

Основные результаты работы докладывались на VIII-ой Всероссийской конференции молодых ученых с международным участием «Пищевые технологии» (Казань, 2007 г.); V-ой юбилейной школе-конференции с международным участием «Высокоэффективные пищевые технологии, методы и средства их реализации» (Москва, 2007 г.); VI-ой Международной научной конференции студентов и аспирантов «Техника и технология пищевых производств» (Республика Беларусь, Могилев , 2008 г.).

Результаты работы демонстрировались в VIII Московском международном салоне инноваций и инвестиций (2008 г.) и на II Международной выставке и конгрессе «Перспективные технологии XXI века» (Москва, ВВЦ, 2008 г.)

Публикации

Структура и объем работы

Диссертационная работа состоит из введения, обзора литературы, экспериментальной части, выводов, списка литературы, приложений. Список литературы включает 120 источников отечественных и зарубежных авторов. Работа изложена на 202 страницах машинописного текста, содержит 34 рисунка, 32 таблицы.

1. ОБЗОР ЛИТЕРАТУРЫ

В обзоре литературы приведена общая характеристика гречихи, ее ботаническая классификация и морфологические особенности, представлен химический состав гречихи. Проведен анализ существующей технологии переработки и ассортимента продуктов, вырабатываемых из гречихи. Рассмотрены принципиальные методы гидротермической обработки (ГТО) зерна.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1. Материалы и методы исследования

Исследования проводились в лабораториях кафедр «Технология переработки зерна», «Биохимия и зерноведение», «Технология хлебопекарного и макаронного производства», «Технологическое оборудование предприятий хлебопродуктов» Московского государственного университета пищевых производств, на кафедре «Технология упаковки и переработки ВМС» Московского государственного университета биотехнологии, а также в лабораториях услуги».

При проведении исследований использовались образцы сортовой и рядовой гречихи четырех партий, показатели качества которых приведены в таблице 1.

Технический и химический анализ гречихи, выработанных хлопьев, муки, хлеба проводили по методам, предусмотренным действующими на момент проведения исследования ГОСТами.

Таблица 1

Показатели качества образцов гречихи

Наименование показателя

Показатели

Цвет, запах, вкус

Соответствующие здоровой, доброкачественной гречихе

Влажность, %

Зараженность вредителями

Не обнаружена

Пленчатость, %

Количество водо - и солерастворимых фракций белка определяли по методу, основанному на взаимодействии белка с красителем пирогаллоловым красным; количество декстринов – по методике, разработанной и; крошимость гречневых хлопьев - по методике проф. ; средний размер хлопьев определяли с помощью гранулометрического измерительного устройства ГИУ-2 и программного продукта для ЭВМ «Flour (v3._)»; удельный объем и пористость хлебобулочных изделий определяли по общепринятым методикам.

2.2. Результаты и их обсуждение

Процесс переработки гречихи в крупу изучался рядом исследователей. Проведены исследования химического состава гречихи, рекомендованы оптимальные режимы ее гидротермической обработки, обоснованы рациональные режимы шелушения гречихи и структура рабочих органов вальцедековых станков.

В последнее время существенно расширился ассортимент продуктов из гречихи, что определяет необходимость разработки комплексной технологии ее переработки, т. к. производство таких продуктов как хлопья и мука осуществляется на предприятиях малой мощности, сырьем для которых служат ядрица и продел, полученные на гречезаводах.

Была разработана технология комплексной переработки гречихи, которая схематично представлена на рисунке 1.

Рисунок 1. Схема комплексной технологии переработки гречихи

Представленная на рис. 1 схема комплексной технологии предполагает производство из гречихи традиционных продуктов – крупы, а также продуктов быстрого приготовления и муки. Приведенная схема позволяет применять специфические режимы и способы ГТО гречихи, целенаправленно меняя свойства сырья для более полного использования ресурсов зерна, повышая выход и качество конечных продуктов .

2.2.1. Повышение эффективности калибрования отдельных фракций гречихи

Одной из особенностей технологии производства гречневой крупы является раздельная переработка гречихи по фракциям. Тщательное сортирование гречихи на фракции вызывается необходимостью достижения наибольшего коэффициента шелушения при минимальном дроблении ядра и более полного отделения ядра от нешелушенного зерна. Для полного выделения более мелких семян гречихи на ситах должна быть обеспечена оптимальная высота слоя продукта. Известно, что при прочих равных условиях именно от высоты слоя продукта на сите зависит эффективность высеивания проходовой фракции.

Поэтому было предложено первую часть фракции гречихи, полученной после калибрования, направлять на шелушение, а вторую возвращать для повторного сортирования на ту же просеивающую машину. Проходя повторно через машину, вторая часть фракции дополнительно освобождается от мелких зерен. Изменяя соотношение потоков, направляемых на шелушение и повторное просеивание, устанавливается оптимальная нагрузка на просевающие машины.

В лабораторных условиях было установлено, что количество двух крупных фракций при фракционировании по существующей схеме составило
89,1 % и 85,9 % - при фракционировании гречихи по предлагаемой схеме (табл. 2).

Разработанный способ позволяет более эффективно высеять мелкие фракции гречихи. Количество дополнительно выделенных мелких семян составило 3,2 % по сравнению с традиционной схемой, а общий коэффициент недосева для фракций Ø 4,4 / Ø 4,2 и менее снижается на 18,6 %.

Таблица 2

Результаты фракционирования гречихи по существующей и разработанной схемам

Существующая схема фракционирования

Предлагаемая схема фракционирования

Коэффициент недосева, %

Коэффициент недосева, %

Не определялся

Не определялся

Не определялся

Не определялся

Не определялся

Не определялся

2.2.2. Разработка технологии выработки хлопьев из гречихи

2.2.2.1. Выработка гречневых хлопьев из необработанного семени гречихи

В последнее время существенно расширился ассортимент крупяных продуктов, в том числе и из гречихи. Выработка продуктов быстрого приготовления из гречихи (хлопьев), как правило, ведется из крупы, а технология в значительной степени повторяет технологию овсяных хлопьев. Но структурно-механические свойства овсяного и гречневого ядра существенно различаются, что требует интенсификации гидротермической обработки ядра гречихи перед плющением. Такая обработка может предусматривать различные режимы и сочетание способов ГТО.

В предварительных экспериментах была определена рациональная последовательность выработки гречневых хлопьев: выделение фракции гречихи, очищенной от сорной и зерновой примесей => увлажнение и отволаживание => пропаривание, сушка, охлаждение => шелушение гречихи, плющение, сушка хлопьев. Установлено, что предварительное увлажнение следует проводить до 25 %, а отволаживание вести в течение 6 часов.

Выявлено, что режимы пропаривания оказывают значительное влияние на гранулометрический состав хлопьев. Снижение давления пара (до 0,1 МПа) и уменьшение длительности пропаривания (до 3 мин) приводит к существенному увеличению доли крупной фракции хлопьев в общей массе по сравнению с традиционными режимами крупяного производства (давление пара - 0,25МПа, длительность пропаривания – 5 мин). Однако при уменьшении давления пара и длительности пропаривание возрастает крошимость хлопьев.

Выбор режимов увлажнения и отволаживания гречихи при ее подготовке к плющению проведен с помощью полного факторного эксперимента
ПФЭ – 22. Степень предварительного увлажнение (Х1) варьировали в диапазоне 23 и 27 %, а длительность отволаживания – в пределах 5 и 8 часов.

Оптимизацию процесса вели по выходу крупной фракции гречневых хлопьев – схода с сита Ø 4,0 (Y1) и крошимости (Y2). На основании полученных данных были рассчитаны следующие уравнения регрессии :

Y1 = 61,6+ 7,6*X1 +0,55*X2 + 0,05*X1*X2 (1)

Y2 = 10,7 – 2,6*X1 +0,73*X2 + 0,78*X1*X2 (2)

Коэффициенты Х2 и межфакторного взаимодействия в уравнениях незначимы. Очевидно, это связано с тем, что значение длительности отволаживания в центральной точке эксперимента соответствует его оптимуму.

Увеличение степени увлажнения положительно сказывается на качестве гречневых хлопьев, а именно количество крупной фракции хлопьев увеличивается, стойкость к механическим воздействием возрастает. Однако увлажнение гречихи свыше 26 % приводит к образованию конгломератов в результате слипания нескольких ядер при плющении.

Установлено, что темперирование в течение двух часов перед этапом шелушения положительно сказывается на стойкости хлопьев к разрушению, которую опосредованно определяли по показателю крошимости (табл. 3). Содержание крупной фракции гречневых хлопьев после разрушения по сравнению с контрольным образцом увеличивается на 10,4%, а количество дополнительно образовавшейся крошки и мучки (крошимость) уменьшилось на 6,3%.

Таблица 3

Влияние различных вариантов кондиционирования гречихи на выход и
крошимость хлопьев

Выход хлопьев, %

Вариант подготовки

Без темперирования

(контроль)

Темперирование

Темперирование + 2ое пропаривание

*ПП - продукты, полученные после плющения;

**ПР - продукты, полученные после определения крошимости хлопьев.

2.2.2.2. Выработка гречневых хлопьев с применением инфракрасной обработки

Метод ИК-облучения является хорошо известным и достаточно изученным физическим методом обработки пищевых продуктов. Однако ИК-обработка, как правило, используется на заключительном этапе выработки зерновых хлопьев.

При выполнении исследований была разработана следующая гипотеза: предшествующее обработке ИК-излучением увлажнение и отволаживание гречихи приводит к насыщению ядра влагой и способствует ее равномерному распределению в зерновке. При проникновении влаги внутрь ядра в эндосперме образуются микротрещины. Последующая ИК-обработка способствует испарению высокоподвижной влаги гречихи и еще большему разрушению эндосперма, образованию его пористой структуры. Это приводит к более глубокому проникновению влаги и пара в ядро при пропаривании, способствуя значительной пластификации гречихи перед плющением.

Проверка гипотезы показала, что включение ИК-обработки в технологическую схему выработки гречневых хлопьев приводило к существенному подсушиванию гречихи, поэтому предусмотрели этап повторного увлажнения и отволаживания.

Установлено, что применение ИК-обработки при производстве гречневых хлопьев способствует их упрочнению, крупная фракция хлопьев менее подвержена разрушению. По сравнению с вариантом, не предусматривающим ИК-обработки, количество крупной фракции после определения крошимости увеличилось на 20 %.

При изучении влияния длительности ИК-обработки на выход и крошимость хлопьев (рис. 2) было выявлено, что увеличение длительности ИК-обработки свыше 30 с практически не влияет на общий выход хлопьев, однако существенно сказывается на крошимости, делая хлопья более хрупкими.

Рисунок 2. Влияние длительности ИК-обработки на выход и крошимость гречневых хлопьев

Наиболее стойкие к механическим воздействиям гречневые хлопья могут быть выработаны при проведении обработки в течение 25-35 с при плотности лучистого потока 25,7 кВт/ м2.

Экспериментально установлено, что при уменьшении интенсивности ИК-излучения необходимо проводить более длительную обработку, добиваясь большего снижения влажности полуфабриката. Очевидно, это связано с тем, что при плотности лучистого потока 25,7 кВт/ м2 испарение высокоподвижной влаги гречихи происходит интенсивнее, что приводит к более значительному разрыхлению эндосперма.

2.2.2.3. Выработка гречневых хлопьев из ядрицы

Изучена возможность выработки хлопьев из гречневой крупы, ядрицы. Исходным сырьем служила гречиха, прошедшая ГТО при традиционных режимах крупяного производства. В первом случае шелушение гречихи проводили на заключительном этапе подготовки, то есть перед плющением, во втором случае – сразу после охлаждения гречихи, то есть к плющению подготавливали непосредственно ядрицу.

Пропаривание гречихи при давлении пара 0,25 МПа в течение 5 мин. приводит к значительному упрочнению ядра и снижению прочности хлопьев. Установлено, что увеличение длительности повторного отволаживания (ТПОТВ) снижает крошимость гречневых хлопьев (табл. 4).

Таблица 4

Влияние длительности повторного отволаживания на выход и стойкость хлопьев

Выход хлопьев, %

Хлопья, полученные при ГТО семени гречихи

Хлопья, полученные при ГТО ядрицы

ТПОТВ. = 6ч

ТПОТВ. = 12ч

ТПОТВ. = 18ч

ТПОТВ. = 6ч

ТПОТВ. = 12ч

ТПОТВ. = 18ч

Шелушить гречиху рекомендуется непосредственно перед плющением, количество крупной фракции гречневых хлопьев в этом случае в полтора раза больше, чем при шелушении гречихи по завершении ГТО, предусмотренной традиционной схемой крупяного производства.

2.2.2.4. Определение качественных характеристик выработанных хлопьев

На основании общего выхода хлопьев, их гранулометрического состава и крошимости были определены 6 технологических схем выработки гречневых хлопьев, которые позволяли получать хлопья, характеризующиеся лучшими показателями. Для гречневых хлопьев, выработанных по этим технологическим схемам, определялись характеристики, приведенные в таблице 5, которые также определялись для целого семени гречихи и ядрицы, являвшихся контролем.

Таблица 5

Качественные характеристики выработанных гречневых хлопьев

Показатель

Целое семя гречихи

Гречневые хлопья, выработанные по технологической схеме

Из семян гречихи

Из семян гречихи с темперированием

Из семян гречихи с темперированием и пропариванием

Из семени гречихи с ИК-обработкой

Из гречихи, подвергнутой ГТО

Из ядрицы

Общий выход, %

Крошимость, %

Средний размер, мм

Длительность варки, мин

Коэффициент привара, у. е.

Влажность, %

Общего белка;

Крахмала;

Декстринов.

*в скобках - общий выход гречневых хлопьев в пересчете на целое семя гречихи;

**по литературным данным

Общий выход гречневых хлопьев для всех вариантов технологических схем составляет не менее 95 % по отношению к крупе, пошедшей на плющение, или не менее 71 % по отношению к гречихе. Исключением является вариант выработки хлопьев из ядрицы.

Учитывая показатели комплекса характеристик, приведенных в таблице 5, лучшим вариантом следует признать схему выработки гречневых хлопьев, предусматривающую ИК-обработку. Данные хлопья отличаются одним из минимальных показателей крошимости и максимальным средним размером хлопьев. Уменьшение количества водо - и солерастворимой фракций белка у этого образца не столь ощутимо как в остальных случаях и составляет 6,3%. В результате комплексного воздействия увлажнения, ИК-обработки и пропаривания количество декстринов увеличивается до 2,6 %.

С точки зрения потребительских достоинств хлопья, выработанные с применением ИК-обработки, характеризуются минимальной длительностью варки – 2 мин и коэффициентом привара, равным 6,5-7,5 условным единицам.

Рисунок 3. Технологи-ческая схема выработки гречневых хлопьев с применением ИК-обработки

2.2.3. Разработка технологии производства гречневой муки

Производство гречневой муки, как правило, ведется из крупы и связано со значительными затратами, т. к. предполагает процессы калибрования и пофракционного шелушения гречихи. Одной из задач была разработка технологической схемы исключающей эти процессы.

С учетом строения гречихи, а также на основании изучения содержания ядра гречихи в промежуточных продуктах размола, их аэродинамических свойств была разработана технологическая схема размола гречихи в муку с использованием аспираторов, представленная на рисунке 4. Технологическая схема позволяет получать выход гречневой муки в количестве не менее 70%.

Технологический процесс производства гречневой муки включает очистку зерна от примесей, измельчение, сортирование продуктов измельчения, контроль муки.

Рисунок 4. Технологическая схема производства гречневой муки

С целью повышения выхода гречневой муки и более полного использования потенциала гречихи изучали влияние способов и режимов ГТО, об эффективности которых судили на основании общего выхода гречневой муки, а также по остаточному содержанию крахмала в лузге после проведения помола. Результаты приведены в таблице 6.

Таблица 6

Влияние способов и режимов ГТО на выход гречневой муки

Режимы ГТО

Общий выход гречневой муки, %

Увлажнение на 3%; длительность отволаживания – 15 мин.

Пропаривание при давлении пара (р) 0,05МПа; в течение (t) - 2 мин.

Пропаривание при

р = 0,05МПа; t = 5 мин.

Пропаривание при

р = 0,25МПа; t = 2 мин.

Пропаривание при

р = 0,25МПа; t = 5 мин.

Установлено, что пропаривание гречихи в зависимости от принятых параметров ГТО позволяет добиться более полного выхода ядра и увеличить выход муки на 0,5-1,5 %. Перед помолом целесообразно проводить пропаривание гречихи при давлении пара 0,05 МПа в течение 5 минут. Дальнейшее увеличение давления пара не приводит к существенному росту выхода гречневой муки.

Целесообразность проведения пропаривания гречихи перед помолом экспериментально подтверждена при оценке влияния различных дозировок гречневой муки на качество хлеба из пшеничной муки высшего сорта. Оценку качества хлеба осуществляли балловым методом. Результаты определения качества хлеба представлены на рисунке 5.

Качество хлеба с использованием муки, полученной из пропаренной гречихи, увеличивалось на 2 – 15 % по сравнению с хлебом с использованием муки из необработанного семени и на 8 – 38 % относительно хлеба без применения гречневой муки.

Рисунок 5. Влияние количества добавленной гречневой муки на качество хлеба из пшеничной муки высшего сорта

Хлеб с применением гречневой муки из семени, прошедшего ГТО, имел более привлекательный внешний вид, за счет более насыщенного цвета корки, больший удельный объем, более развитую структуру пористости, наиболее выраженный приятный гречишный аромат.

2.2.4. Утилизация лузги

Создание безотходного производства с наиболее полным использованием сырья, включая отходы, по-прежнему остается актуальным. Вторичные сырьевые ресурсы и отходы зерноперерабатывающей промышленности ежегодно составляют около 5 млн. т. Одним из направлений комплексного использования вторичных сырьевых ресурсов агропромышленного комплекс а и внедрения экологически безвредных способов их утилизации может явиться применение вторичных сырьевых ресурсов в упаковочном производстве.

Свойства упаковочных композиционных материалов зависят от размера частиц органического наполнителя, который не должен быть больше 450~500 мкм, но не менее 100 мкм. Качество изделия также зависит от влажности сырья. Влажность сырья не должна быть более 10 %.

Измельчение лузги производили в машинах ударно-истирающего действия. В процессе исследования были испытаны различные типы машин (вальцовые станки с нарезной и микрошероховатой поверхностью), ножевая дробилка Брабендера, мельницы ЕМЛ, МШЗ, Пертена.

Установлено, что однократное измельчение в машинах с окружной скоростью рабочего органа не менее 80 м/с и диаметром отверстий ситовой обечайки 450 мкм позволяет получить 95 % продукта с размером частиц менее 450 мкм.

Процесс подготовки отходов представлен на рисунке 6 и включает:

1. Удаление дробленого ядра, мучки, которые являются кормовым продуктом и используются в комбикормовом производстве.

2. Сушку лузги до 10 %, что возможно при ее сушке в ожиженном состоянии (лабораторная сушилка при Т = 110 ºС в течение 3 минут).

3. Измельчение лузги с контролем крупности помола в просеивающей машине.


Рисунок 6. Принципиаль-ная схема процесса подготовки лузги для ввода в композитные упаковочные материалы

Полученная после измельчения гречневая лузга представляет собой наполнитель, в качестве полимера при выработке композитных упаковочных материалов использовались полиэтилен или полипропилен.

Линия выработки включала получение гранул методом термопластической экструзии, после чего изготовляли пленку, которую в последующем исследовали на разрушающее напряжение.

Было выявлено, что чем больше содержалось отходов в полиэтиленовой матрице, тем ниже было для нее разрушающее напряжение. Аналогичные результаты получены и для полипропиленовой матрицы. Однако если учитывать, что для создания качественного вторичного полимерного сырья и изделий на его основе величина прочности, характеризующаяся разрушающим напряжением при одноосном растяжении, должна быть не менее 4 МПа, то для композиции, приготовленной с отходами пропилена, дозировка введения гречневой лузги может составлять 20 %.

1. Разработана комплексная технология переработки гречихи, предусматривающая выработку как традиционных продуктов – крупы, так и продуктов быстрого приготовления, муки, а также утилизацию лузги.

2. В результате комплексных исследований технологии переработки гречихи в продукты быстрого приготовления (гречневые хлопья) и хлебопекарную муку, предложены новые технологические решения выработки указанных продуктов с повышенным выходом.

3. При выработке гречневых хлопьев рекомендована следующая последовательность и режимы технологических операций: фракцию гречихи, очищенную от примесей, доводить до влажности 26-27 % и отволаживать 6-7 часов, подвергать воздействию ИК-излучения в течение 30-35 при плотности лучистого потока 25-26 кВт/м2. После этого дополнительно доувлажнять до 26-27 % и отволаживать 6-6,5 часов, затем проводить пропаривание в течение 5 минут при давлении пара 0,1-0,15 МПа. Пропаренную гречиху подсушивать до влажности 26 %, охлаждать, шелушить. На заключительном этапе из полученных после плющения гречневых хлопьев удалять крошку и мучку, хлопья доводить до влажности 12-14 %.

4. Теоретически обоснована возможность применения при производстве гречневых хлопьев одновременно двух способов энергоподвода – ИК-излучения и пропаривания. Экспериментальными исследованиями подтверждена эффективность последовательной обработки гречихи ИК-излучением, приводящей к некоторому разрыхлению структуры ядра, с последующим пропариванием, способствующим его пластификации. Использование данной технологии приводит к снижению крошимости хлопьев, длительность варки составляет не более двух минут, коэффициент привара достигает значения 7,5 у. е. Общий выход хлопьев составляет около 97 %, по отношению к крупе, пошедшей на плющение, или 71,6 % по отношению к гречихе. Снижение количества альбуминов и глобулинов в таких хлопьях минимально и составляет 6,3 %, количество декстринов возрастает до 2,6 %.

5. Экспериментально обоснованы режимы подготовки гречихи, прошедшей ГТО при традиционных режимах крупяного производства, к плющению при выработке из нее хлопьев. Рекомендуется гречиху для производства хлопьев отбирать перед этапом шелушения. Подготовку к плющению вести в соответствии со схемой выработки хлопьев из семян гречихи, а этап повторного отволаживания предусмотреть в течение не менее 18 ч.

6. Разработанная технологическая схема производства муки из гречихи не предусматривает этапов фракционирования и шелушения и позволяет получать общий выход муки не менее 70 %.

7. Научно обоснованы и экспериментально подтверждены режимы ГТО гречихи при производстве муки. Рекомендуется проведение предварительного пропаривания при давлении пара 0,05 МПа в течение 5 минут, которое способствует увеличению выхода муки на 1,1 %. При этом увеличивается содержание крупной фракции гречневой муки, происходящее в результате упрочнение ядра гречихи при пропаривании.

8. Показана возможность использования гречневой муки, выработанной по разработанной технологической схеме, в рецептуре хлеба из пшеничной муки высшего сорта. Отмечено положительное влияние муки гречневой на качество хлеба. Качественные показатели хлеба, полученного с использованием муки из гречихи, подвергнутой ГТО, лучше чем у хлеба с использованием муки из необработанной гречихи и хлеба без добавления муки гречневой. Рекомендуемый процент подсортировки гречневой муки составляет 15 – 20 %.

9. Разработан способ фракционирования гречихи, который предполагает стабилизацию нагрузки и толщины слоя гречихи в просеивающих машинах, за счет деления сходов с сит мелких фракций гречихи на две части, из которых одну направляют на шелушение, а вторую – на повторное просеивание на тех же ситах. Применение данного способа при фракционировании позволяет дополнительно выделить более 3 % мелких семян гречихи по сравнению с традиционной схемой фракционирования.

10. В целях утилизации гречневой лузги разработана технологическая последовательность подготовки к вводу ее в композиционные упаковочные материалы, включающая этапы удаления из плодовых оболочек гречихи кормовых отходов, сушку и измельчение лузги. Показана возможность применения лузги гречневой в композиционных упаковочных материалах. Для композиции, приготовленной с отходами пропилена, дозировка введения гречневой лузги может составлять 20 %.

1. Чевокин, производства гречневой муки [Текст] / , // Сборник докладов IV-ой Международной научно-практической конференции «Технологии и продукты здорового питания» - М.: Издательский комплекс МГУПП, 2006. – Части II – С. 64-67.

2. Изосимов, режимов гидротермической обработки на качество гречневых хлопьев [Текст] / , // Материалы третьей международной конференции «Качество зерна, муки, хлебобулочных и макаронных изделий» - М.: Пищепромиздат, 2006. – С. 111-112.

3. Чевокин, А. Технология получения гречневых хлопьев [Текст] / А. Чевокин, В. Изосимов, Е. Мельников // Хлебопродукты– №6. –
С. 48-49.

4. Чевокин, гречневых хлопьев с использованием интенсивного энергоподвода [Текст] / // Сборник докладов V-ой юбилейной школе-конференции с международным участием «Высокоэффективные пищевые технологии, методы и средства их реализации» - М.: МГУПП, 2007. – С. 330-333.

5. Мельников, получения зерновых хлопьев [Текст] / , // Патент РФ № 000. – 20.05.2008. – Бюл. №14.

6. Колпакова пищевой промышленности – перспектиное сырье для биоразлагаемых упаковочных композиций [Текст] / , и др. // Пищевая промышленность– №6. – С. 16-19.

7. Чевокин, А. Влияние подготовки гречихи к плющению на качество хлопьев [Текст] / А. Чевокин // Хлебопродукты– №7. – С. 54-55.

8. Мельников, получения гречневой крупы [Текст] / , // Патент РФ № 000. – 10.09.2008. – Бюл. №25.

9. Ананьев, № 000 Биологически разрушаемая термопластическая композиция [Текст] / , Панкратов Г. Н, - № заявлено 28.02.2008.

Complex buckwheat processing technology with hull recycling.

A. A. Chevokin

Results of complex buckwheat processing technology development are presented in the paper, assuming production of fast preparation products and buckwheat flour; improvement of traditional groats quality; hull recycling.

Basic regularities are revealed; depending on directions of buckwheat further use parameters of its hydrothermal treatment are defined.

Main recommendations on technological process conducting of aforementioned products manufacture are formulated.

Понравилась статья? Поделиться с друзьями: